Elementarmathematik Beispiele

Bestimme die x- und y-Achsenabschnitte sin(x)
Schritt 1
Schreibe als Gleichung.
Schritt 2
Bestimme die Schnittpunkte mit der x-Achse.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Um den/die Schnittpunkt(e) mit der x-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 2.2
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Schreibe die Gleichung als um.
Schritt 2.2.2
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Der genau Wert von ist .
Schritt 2.2.4
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 2.2.5
Subtrahiere von .
Schritt 2.2.6
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 2.2.6.2
Ersetze durch in der Formel für die Periode.
Schritt 2.2.6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 2.2.6.4
Dividiere durch .
Schritt 2.2.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
Schritt 2.2.8
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 2.3
Schnittpunkt(e) mit der x-Achse in Punkt-Form.
Schnittpunkt(e) mit der x-Achse: , für jede Ganzzahl
Schnittpunkt(e) mit der x-Achse: , für jede Ganzzahl
Schritt 3
Bestimme die Schnittpunkte mit der y-Achse.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Um den/die Schnittpunkt(e) mit der y-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 3.2
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Entferne die Klammern.
Schritt 3.2.2
Der genau Wert von ist .
Schritt 3.3
Schnittpunkt(e) mit der y-Achse in Punkt-Form.
Schnittpunkt(e) mit der y-Achse:
Schnittpunkt(e) mit der y-Achse:
Schritt 4
Führe die Schnittpunkte auf.
Schnittpunkt(e) mit der x-Achse: , für jede Ganzzahl
Schnittpunkt(e) mit der y-Achse:
Schritt 5