Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Wenn eine Polynomfunktion ganzzahlige Koeffizienten hat, dann hat jede rationale Nullstelle die Form , wobei ein Teiler der Konstanten und ein Teiler des Leitkoeffizienten ist.
Schritt 2
Ermittle jede Kombination von . Dies sind die möglichen Wurzeln der Polynomfunktion.
Schritt 3
Setze die möglichen Wurzeln eine nach der anderen in das Polynom ein, um die tatsächlichen Wurzeln zu ermitteln. Vereinfache, um zu prüfen, ob der Wert gleich ist, was bedeutet, dass er eine Wurzel ist.
Schritt 4
Schritt 4.1
Vereinfache jeden Term.
Schritt 4.1.1
Potenziere mit .
Schritt 4.1.2
Potenziere mit .
Schritt 4.1.3
Mutltipliziere mit .
Schritt 4.1.4
Mutltipliziere mit .
Schritt 4.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 4.2.1
Subtrahiere von .
Schritt 4.2.2
Addiere und .
Schritt 4.2.3
Subtrahiere von .
Schritt 5
Da eine bekannte Wurzel ist, teile das Polynom durch , um das Quotientenpolynom zu ermitteln. Dieses Polynom kann dann benutzt werden, um die verbleibenden Wurzeln zu finden.
Schritt 6
Schritt 6.1
Ordne die Zahlen, die den Divisor und den Dividenden darstellen, ähnlich wie in einer Division an.
Schritt 6.2
Die erste Zahl im Dividenden wird an die erste Position des Ergebnisbereichs gestellt (unterhalb der horizontalen Linie).
Schritt 6.3
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
Schritt 6.4
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
Schritt 6.5
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
Schritt 6.6
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
Schritt 6.7
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
Schritt 6.8
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
Schritt 6.9
Alle Zahlen außer der letzten werden Koeffizienten des Quotients der Polynome. Der letzte Wert in der Ergebniszeile ist der Rest.
Schritt 6.10
Vereinfache das Quotientenpolynom.
Schritt 7
Schritt 7.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 7.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 7.3
Vereinfache .
Schritt 7.3.1
Schreibe als um.
Schritt 7.3.2
Schreibe als um.
Schritt 7.3.3
Schreibe als um.
Schritt 7.3.4
Schreibe als um.
Schritt 7.3.5
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 7.3.6
Bringe auf die linke Seite von .
Schritt 7.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 7.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 7.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 7.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 8
Das Polynom kann als ein Satz Linearfaktoren geschrieben werden.
Schritt 9
Das sind die Wurzeln des Polynoms .
Schritt 10