Elementarmathematik Beispiele

Ermittle die Umkehrfunktion f(x) = natural log of 3x-2
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.3
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 3.4
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3.5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Schreibe die Gleichung als um.
Schritt 3.5.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.1
Teile jeden Ausdruck in durch .
Schritt 3.5.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.5.2.2.1.2
Dividiere durch .
Schritt 4
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 5
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1.1
Addiere und .
Schritt 5.2.3.1.2
Addiere und .
Schritt 5.2.3.2
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 5.2.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.4.2
Dividiere durch .
Schritt 5.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.1.2
Forme den Ausdruck um.
Schritt 5.3.3.2
Benutze die Rechenregeln für Logarithmen, um aus dem Exponenten zu ziehen.
Schritt 5.3.3.3
Der natürliche Logarithmus von ist .
Schritt 5.3.3.4
Mutltipliziere mit .
Schritt 5.3.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.1
Subtrahiere von .
Schritt 5.3.4.2
Addiere und .
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .