Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3
Finde den Hauptnenner der Terme in der Gleichung.
Schritt 3.3.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 3.3.2
Entferne die Klammern.
Schritt 3.3.3
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3.4
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Schritt 3.4.1
Multipliziere jeden Term in mit .
Schritt 3.4.2
Vereinfache die linke Seite.
Schritt 3.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.1.2
Forme den Ausdruck um.
Schritt 3.4.3
Vereinfache die rechte Seite.
Schritt 3.4.3.1
Vereinfache jeden Term.
Schritt 3.4.3.1.1
Wende das Distributivgesetz an.
Schritt 3.4.3.1.2
Bringe auf die linke Seite von .
Schritt 3.4.3.1.3
Schreibe als um.
Schritt 3.4.3.1.4
Wende das Distributivgesetz an.
Schritt 3.4.3.1.5
Mutltipliziere mit .
Schritt 3.5
Löse die Gleichung.
Schritt 3.5.1
Schreibe die Gleichung als um.
Schritt 3.5.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 3.5.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.5.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.5.2.3
Subtrahiere von .
Schritt 3.5.3
Faktorisiere aus heraus.
Schritt 3.5.3.1
Faktorisiere aus heraus.
Schritt 3.5.3.2
Faktorisiere aus heraus.
Schritt 3.5.3.3
Faktorisiere aus heraus.
Schritt 3.5.4
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.5.4.1
Teile jeden Ausdruck in durch .
Schritt 3.5.4.2
Vereinfache die linke Seite.
Schritt 3.5.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.5.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.5.4.2.1.2
Dividiere durch .
Schritt 3.5.4.3
Vereinfache die rechte Seite.
Schritt 3.5.4.3.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4
Replace with to show the final answer.
Schritt 5
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Multiply the numerator and denominator of the fraction by .
Schritt 5.2.3.1
Mutltipliziere mit .
Schritt 5.2.3.2
Kombinieren.
Schritt 5.2.4
Wende das Distributivgesetz an.
Schritt 5.2.5
Vereinfache durch Kürzen.
Schritt 5.2.5.1
Kürze den gemeinsamen Faktor von .
Schritt 5.2.5.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.5.1.2
Forme den Ausdruck um.
Schritt 5.2.5.2
Kürze den gemeinsamen Faktor von .
Schritt 5.2.5.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.5.2.2
Forme den Ausdruck um.
Schritt 5.2.6
Vereinfache den Zähler.
Schritt 5.2.6.1
Stelle und um.
Schritt 5.2.6.2
Addiere und .
Schritt 5.2.6.3
Faktorisiere aus heraus.
Schritt 5.2.6.3.1
Faktorisiere aus heraus.
Schritt 5.2.6.3.2
Faktorisiere aus heraus.
Schritt 5.2.6.4
Subtrahiere von .
Schritt 5.2.6.5
Addiere und .
Schritt 5.2.7
Vereinfache den Nenner.
Schritt 5.2.7.1
Wende das Distributivgesetz an.
Schritt 5.2.7.2
Bringe auf die linke Seite von .
Schritt 5.2.7.3
Mutltipliziere mit .
Schritt 5.2.7.4
Wende das Distributivgesetz an.
Schritt 5.2.7.5
Bringe auf die linke Seite von .
Schritt 5.2.7.6
Mutltipliziere mit .
Schritt 5.2.7.7
Subtrahiere von .
Schritt 5.2.7.8
Subtrahiere von .
Schritt 5.2.7.9
Addiere und .
Schritt 5.2.7.10
Addiere und .
Schritt 5.2.8
Kürze den gemeinsamen Faktor von .
Schritt 5.2.8.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.8.2
Dividiere durch .
Schritt 5.3
Berechne .
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Vereinfache jeden Term.
Schritt 5.3.3.1
Vereinfache den Nenner.
Schritt 5.3.3.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.3.3.1.2
Kombiniere und .
Schritt 5.3.3.1.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.3.3.1.4
Schreibe in eine faktorisierte Form um.
Schritt 5.3.3.1.4.1
Wende das Distributivgesetz an.
Schritt 5.3.3.1.4.2
Mutltipliziere mit .
Schritt 5.3.3.1.4.3
Subtrahiere von .
Schritt 5.3.3.1.4.4
Addiere und .
Schritt 5.3.3.1.4.5
Addiere und .
Schritt 5.3.3.2
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5.3.3.3
Kürze den gemeinsamen Faktor von .
Schritt 5.3.3.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.3.2
Forme den Ausdruck um.
Schritt 5.3.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.3.4.1
Addiere und .
Schritt 5.3.4.2
Addiere und .
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .