Elementarmathematik Beispiele

Ermittle die Umkehrfunktion f(x)=4/(2-x)
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 3.2.2
Entferne die Klammern.
Schritt 3.2.3
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Multipliziere jeden Term in mit .
Schritt 3.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.2
Forme den Ausdruck um.
Schritt 3.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.1
Wende das Distributivgesetz an.
Schritt 3.3.3.2
Stelle um.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.2.1
Bringe auf die linke Seite von .
Schritt 3.3.3.2.2
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.4
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Schreibe die Gleichung als um.
Schritt 3.4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.4.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.1
Teile jeden Ausdruck in durch .
Schritt 3.4.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3.4.3.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.3.2.2.2
Dividiere durch .
Schritt 3.4.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.3.1.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.4.3.3.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.3.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.3.3.1.2.2
Forme den Ausdruck um.
Schritt 3.4.3.3.1.2.3
Bringe die negative Eins aus dem Nenner von .
Schritt 3.4.3.3.1.3
Schreibe als um.
Schritt 3.4.3.3.1.4
Mutltipliziere mit .
Schritt 4
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 5
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5.2.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.2.2
Forme den Ausdruck um.
Schritt 5.2.3.3
Wende das Distributivgesetz an.
Schritt 5.2.3.4
Mutltipliziere mit .
Schritt 5.2.3.5
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.5.1
Mutltipliziere mit .
Schritt 5.2.3.5.2
Mutltipliziere mit .
Schritt 5.2.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.1
Addiere und .
Schritt 5.2.4.2
Addiere und .
Schritt 5.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1
Schreibe als um.
Schritt 5.3.3.2
Faktorisiere aus heraus.
Schritt 5.3.3.3
Faktorisiere aus heraus.
Schritt 5.3.3.4
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.4.1
Faktorisiere aus heraus.
Schritt 5.3.3.4.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.4.3
Forme den Ausdruck um.
Schritt 5.3.4
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.1
Addiere und .
Schritt 5.3.4.2
Addiere und .
Schritt 5.3.4.3
Kombiniere Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.3.1
Faktorisiere das negative Vorzeichen heraus.
Schritt 5.3.4.3.2
Mutltipliziere mit .
Schritt 5.3.4.3.3
Mutltipliziere mit .
Schritt 5.3.5
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5.3.6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.6.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.6.2
Forme den Ausdruck um.
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .