Elementarmathematik Beispiele

Ermittle die Umkehrfunktion f(x) = square root of 8-x
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, quadriere beide Seiten der Gleichung.
Schritt 3.3
Vereinfache jede Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Benutze , um als neu zu schreiben.
Schritt 3.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.3.2.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.1.2.2
Forme den Ausdruck um.
Schritt 3.3.2.1.2
Vereinfache.
Schritt 3.4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.4.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1
Teile jeden Ausdruck in durch .
Schritt 3.4.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3.4.2.2.2
Dividiere durch .
Schritt 3.4.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.3.1.1
Bringe die negative Eins aus dem Nenner von .
Schritt 3.4.2.3.1.2
Schreibe als um.
Schritt 3.4.2.3.1.3
Dividiere durch .
Schritt 4
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 5
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1.1
Benutze , um als neu zu schreiben.
Schritt 5.2.3.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.2.3.1.3
Kombiniere und .
Schritt 5.2.3.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.1.4.2
Forme den Ausdruck um.
Schritt 5.2.3.1.5
Vereinfache.
Schritt 5.2.3.2
Wende das Distributivgesetz an.
Schritt 5.2.3.3
Mutltipliziere mit .
Schritt 5.2.3.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.4.1
Mutltipliziere mit .
Schritt 5.2.3.4.2
Mutltipliziere mit .
Schritt 5.2.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.1
Addiere und .
Schritt 5.2.4.2
Addiere und .
Schritt 5.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Wende das Distributivgesetz an.
Schritt 5.3.4
Mutltipliziere mit .
Schritt 5.3.5
Subtrahiere von .
Schritt 5.3.6
Addiere und .
Schritt 5.3.7
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .