Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.2.1
Teile jeden Ausdruck in durch .
Schritt 3.2.2
Vereinfache die linke Seite.
Schritt 3.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.2
Dividiere durch .
Schritt 3.3
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 3.4
Multipliziere die linke Seite aus.
Schritt 3.4.1
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 3.4.2
Der natürliche Logarithmus von ist .
Schritt 3.4.3
Mutltipliziere mit .
Schritt 4
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 5
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Kürze den gemeinsamen Faktor von .
Schritt 5.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.2
Dividiere durch .
Schritt 5.2.4
Benutze die Rechenregeln für Logarithmen, um aus dem Exponenten zu ziehen.
Schritt 5.2.5
Der natürliche Logarithmus von ist .
Schritt 5.2.6
Mutltipliziere mit .
Schritt 5.3
Berechne .
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 5.3.4
Kürze den gemeinsamen Faktor von .
Schritt 5.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.4.2
Forme den Ausdruck um.
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .