Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Finde den Hauptnenner der Terme in der Gleichung.
Schritt 3.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 3.2.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Schritt 3.3.1
Multipliziere jeden Term in mit .
Schritt 3.3.2
Vereinfache die linke Seite.
Schritt 3.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.3.2.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.3.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.3
Forme den Ausdruck um.
Schritt 3.4
Löse die Gleichung.
Schritt 3.4.1
Schreibe die Gleichung als um.
Schritt 3.4.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.4.2.1
Teile jeden Ausdruck in durch .
Schritt 3.4.2.2
Vereinfache die linke Seite.
Schritt 3.4.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.2.1.2
Dividiere durch .
Schritt 3.4.2.3
Vereinfache die rechte Seite.
Schritt 3.4.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 3.4.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3.4.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.4.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.4.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4
Replace with to show the final answer.
Schritt 5
Schritt 5.1
Der Definitionsbereich der Inversen (Umkehrfunktion) ist der Wertebereich der ursprünglichen Funktion und umgekehrt. Finde den Definitionsbereich und den Wertebereich von und und vergleiche sie.
Schritt 5.2
Finde den Wertebereich von .
Schritt 5.2.1
Der Wertebereich ist die Menge aller gültigen -Werte. Ermittle den Wertebereich mithilfe des Graphen.
Intervallschreibweise:
Schritt 5.3
Bestimme den Definitionsbereich von .
Schritt 5.3.1
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 5.3.2
Löse nach auf.
Schritt 5.3.2.1
Bestimme alle die Werte, für die der Ausdruck von negativ nach positiv wechselt durch Gleichsetzen jedes Faktors mit und auflösen.
Schritt 5.3.2.2
Bestimme den Definitionsbereich von .
Schritt 5.3.2.2.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 5.3.2.2.2
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 5.3.2.3
Die Lösung besteht aus allen wahren Intervallen.
Schritt 5.3.3
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 5.3.4
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 5.4
Bestimme den Definitionsbereich von .
Schritt 5.4.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 5.4.2
Löse nach auf.
Schritt 5.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 5.4.2.2
Vereinfache .
Schritt 5.4.2.2.1
Schreibe als um.
Schritt 5.4.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5.4.2.2.3
Plus oder Minus ist .
Schritt 5.4.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 5.5
Da der Definitionsbereich von der Wertebereich von ist und der Wertebereich von der Definitionsbereich von ist, ist die inverse Funktion von .
Schritt 6