Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
,
Schritt 1
Eliminiere die beiden gleichen Seiten jeder Gleichung und vereine.
Schritt 2
Schritt 2.1
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Schritt 2.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.1.2
Subtrahiere von .
Schritt 2.2
Bringe alle Terme auf die linke Seite der Gleichung und vereinfache.
Schritt 2.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.2.2
Subtrahiere von .
Schritt 2.3
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 2.4
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 2.5
Vereinfache.
Schritt 2.5.1
Vereinfache den Zähler.
Schritt 2.5.1.1
Potenziere mit .
Schritt 2.5.1.2
Multipliziere .
Schritt 2.5.1.2.1
Mutltipliziere mit .
Schritt 2.5.1.2.2
Mutltipliziere mit .
Schritt 2.5.1.3
Addiere und .
Schritt 2.5.1.4
Schreibe als um.
Schritt 2.5.1.4.1
Faktorisiere aus heraus.
Schritt 2.5.1.4.2
Schreibe als um.
Schritt 2.5.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 2.5.2
Mutltipliziere mit .
Schritt 2.5.3
Vereinfache .
Schritt 2.6
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Schritt 2.6.1
Vereinfache den Zähler.
Schritt 2.6.1.1
Potenziere mit .
Schritt 2.6.1.2
Multipliziere .
Schritt 2.6.1.2.1
Mutltipliziere mit .
Schritt 2.6.1.2.2
Mutltipliziere mit .
Schritt 2.6.1.3
Addiere und .
Schritt 2.6.1.4
Schreibe als um.
Schritt 2.6.1.4.1
Faktorisiere aus heraus.
Schritt 2.6.1.4.2
Schreibe als um.
Schritt 2.6.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 2.6.2
Mutltipliziere mit .
Schritt 2.6.3
Vereinfache .
Schritt 2.6.4
Ändere das zu .
Schritt 2.7
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Schritt 2.7.1
Vereinfache den Zähler.
Schritt 2.7.1.1
Potenziere mit .
Schritt 2.7.1.2
Multipliziere .
Schritt 2.7.1.2.1
Mutltipliziere mit .
Schritt 2.7.1.2.2
Mutltipliziere mit .
Schritt 2.7.1.3
Addiere und .
Schritt 2.7.1.4
Schreibe als um.
Schritt 2.7.1.4.1
Faktorisiere aus heraus.
Schritt 2.7.1.4.2
Schreibe als um.
Schritt 2.7.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 2.7.2
Mutltipliziere mit .
Schritt 2.7.3
Vereinfache .
Schritt 2.7.4
Ändere das zu .
Schritt 2.8
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 3
Schritt 3.1
Ersetze durch .
Schritt 3.2
Vereinfache .
Schritt 3.2.1
Vereinfache jeden Term.
Schritt 3.2.1.1
Wende das Distributivgesetz an.
Schritt 3.2.1.2
Mutltipliziere mit .
Schritt 3.2.2
Addiere und .
Schritt 4
Schritt 4.1
Ersetze durch .
Schritt 4.2
Vereinfache .
Schritt 4.2.1
Vereinfache jeden Term.
Schritt 4.2.1.1
Wende das Distributivgesetz an.
Schritt 4.2.1.2
Mutltipliziere mit .
Schritt 4.2.1.3
Mutltipliziere mit .
Schritt 4.2.2
Addiere und .
Schritt 5
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 7