Elementarmathematik Beispiele

Löse durch Substitution y=x^2-3x-4 , y=5x+11
,
Schritt 1
Eliminiere die beiden gleichen Seiten jeder Gleichung und vereine.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.1.2
Subtrahiere von .
Schritt 2.2
Bringe alle Terme auf die linke Seite der Gleichung und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.2.2
Subtrahiere von .
Schritt 2.3
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 2.4
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 2.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1.1
Potenziere mit .
Schritt 2.5.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1.2.1
Mutltipliziere mit .
Schritt 2.5.1.2.2
Mutltipliziere mit .
Schritt 2.5.1.3
Addiere und .
Schritt 2.5.1.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1.4.1
Faktorisiere aus heraus.
Schritt 2.5.1.4.2
Schreibe als um.
Schritt 2.5.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 2.5.2
Mutltipliziere mit .
Schritt 2.5.3
Vereinfache .
Schritt 2.6
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1.1
Potenziere mit .
Schritt 2.6.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1.2.1
Mutltipliziere mit .
Schritt 2.6.1.2.2
Mutltipliziere mit .
Schritt 2.6.1.3
Addiere und .
Schritt 2.6.1.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1.4.1
Faktorisiere aus heraus.
Schritt 2.6.1.4.2
Schreibe als um.
Schritt 2.6.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 2.6.2
Mutltipliziere mit .
Schritt 2.6.3
Vereinfache .
Schritt 2.6.4
Ändere das zu .
Schritt 2.7
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.1.1
Potenziere mit .
Schritt 2.7.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.1.2.1
Mutltipliziere mit .
Schritt 2.7.1.2.2
Mutltipliziere mit .
Schritt 2.7.1.3
Addiere und .
Schritt 2.7.1.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.1.4.1
Faktorisiere aus heraus.
Schritt 2.7.1.4.2
Schreibe als um.
Schritt 2.7.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 2.7.2
Mutltipliziere mit .
Schritt 2.7.3
Vereinfache .
Schritt 2.7.4
Ändere das zu .
Schritt 2.8
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 3
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ersetze durch .
Schritt 3.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Wende das Distributivgesetz an.
Schritt 3.2.1.2
Mutltipliziere mit .
Schritt 3.2.2
Addiere und .
Schritt 4
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze durch .
Schritt 4.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Wende das Distributivgesetz an.
Schritt 4.2.1.2
Mutltipliziere mit .
Schritt 4.2.1.3
Mutltipliziere mit .
Schritt 4.2.2
Addiere und .
Schritt 5
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 7