Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
,
Schritt 1
Schritt 1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 1.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 1.3.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 1.3.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 1.3.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2
Schritt 2.1
Ersetze alle Vorkommen von durch in jeder Gleichung.
Schritt 2.1.1
Ersetze alle in durch .
Schritt 2.1.2
Vereinfache die linke Seite.
Schritt 2.1.2.1
Vereinfache .
Schritt 2.1.2.1.1
Schreibe als um.
Schritt 2.1.2.1.1.1
Benutze , um als neu zu schreiben.
Schritt 2.1.2.1.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.1.2.1.1.3
Kombiniere und .
Schritt 2.1.2.1.1.4
Kürze den gemeinsamen Faktor von .
Schritt 2.1.2.1.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.1.1.4.2
Forme den Ausdruck um.
Schritt 2.1.2.1.1.5
Vereinfache.
Schritt 2.1.2.1.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 2.1.2.1.2.1
Subtrahiere von .
Schritt 2.1.2.1.2.2
Addiere und .
Schritt 2.2
Stelle jede Seite der Gleichung graphisch dar. Die Lösung ist der x-Wert des Schnittpunktes.
Schritt 2.3
Ersetze alle Vorkommen von durch in jeder Gleichung.
Schritt 2.3.1
Ersetze alle in durch .
Schritt 2.3.2
Vereinfache die rechte Seite.
Schritt 2.3.2.1
Vereinfache .
Schritt 2.3.2.1.1
Potenziere mit .
Schritt 2.3.2.1.2
Addiere und .
Schritt 2.3.2.1.3
Schreibe als um.
Schritt 2.3.2.1.4
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3
Schritt 3.1
Ersetze alle Vorkommen von durch in jeder Gleichung.
Schritt 3.1.1
Ersetze alle in durch .
Schritt 3.1.2
Vereinfache die linke Seite.
Schritt 3.1.2.1
Vereinfache .
Schritt 3.1.2.1.1
Vereinfache jeden Term.
Schritt 3.1.2.1.1.1
Wende die Produktregel auf an.
Schritt 3.1.2.1.1.2
Potenziere mit .
Schritt 3.1.2.1.1.3
Mutltipliziere mit .
Schritt 3.1.2.1.1.4
Schreibe als um.
Schritt 3.1.2.1.1.4.1
Benutze , um als neu zu schreiben.
Schritt 3.1.2.1.1.4.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.1.2.1.1.4.3
Kombiniere und .
Schritt 3.1.2.1.1.4.4
Kürze den gemeinsamen Faktor von .
Schritt 3.1.2.1.1.4.4.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.1.1.4.4.2
Forme den Ausdruck um.
Schritt 3.1.2.1.1.4.5
Vereinfache.
Schritt 3.1.2.1.1.5
Mutltipliziere mit .
Schritt 3.1.2.1.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 3.1.2.1.2.1
Subtrahiere von .
Schritt 3.1.2.1.2.2
Addiere und .
Schritt 3.2
Stelle jede Seite der Gleichung graphisch dar. Die Lösung ist der x-Wert des Schnittpunktes.
Schritt 3.3
Ersetze alle Vorkommen von durch in jeder Gleichung.
Schritt 3.3.1
Ersetze alle in durch .
Schritt 3.3.2
Vereinfache die rechte Seite.
Schritt 3.3.2.1
Vereinfache .
Schritt 3.3.2.1.1
Potenziere mit .
Schritt 3.3.2.1.2
Addiere und .
Schritt 3.3.2.1.3
Schreibe als um.
Schritt 3.3.2.1.4
Multipliziere.
Schritt 3.3.2.1.4.1
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3.3.2.1.4.2
Mutltipliziere mit .
Schritt 4
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 6