Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
,
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Schritt 2.1
Ersetze alle in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Vereinfache .
Schritt 2.2.1.1
Vereinfache jeden Term.
Schritt 2.2.1.1.1
Schreibe als um.
Schritt 2.2.1.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 2.2.1.1.2.1
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2.2
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2.3
Wende das Distributivgesetz an.
Schritt 2.2.1.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 2.2.1.1.3.1
Vereinfache jeden Term.
Schritt 2.2.1.1.3.1.1
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.2
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.3
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.2.1.1.3.1.5
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.2.1.1.3.1.5.1
Bewege .
Schritt 2.2.1.1.3.1.5.2
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.6
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.7
Mutltipliziere mit .
Schritt 2.2.1.1.3.2
Subtrahiere von .
Schritt 2.2.1.2
Addiere und .
Schritt 3
Schritt 3.1
Bringe alle Terme auf die linke Seite der Gleichung und vereinfache.
Schritt 3.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.1.2
Subtrahiere von .
Schritt 3.2
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 3.3
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 3.4
Vereinfache.
Schritt 3.4.1
Vereinfache den Zähler.
Schritt 3.4.1.1
Potenziere mit .
Schritt 3.4.1.2
Multipliziere .
Schritt 3.4.1.2.1
Mutltipliziere mit .
Schritt 3.4.1.2.2
Mutltipliziere mit .
Schritt 3.4.1.3
Addiere und .
Schritt 3.4.1.4
Schreibe als um.
Schritt 3.4.1.4.1
Faktorisiere aus heraus.
Schritt 3.4.1.4.2
Schreibe als um.
Schritt 3.4.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 3.4.2
Mutltipliziere mit .
Schritt 3.4.3
Vereinfache .
Schritt 3.5
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Schritt 3.5.1
Vereinfache den Zähler.
Schritt 3.5.1.1
Potenziere mit .
Schritt 3.5.1.2
Multipliziere .
Schritt 3.5.1.2.1
Mutltipliziere mit .
Schritt 3.5.1.2.2
Mutltipliziere mit .
Schritt 3.5.1.3
Addiere und .
Schritt 3.5.1.4
Schreibe als um.
Schritt 3.5.1.4.1
Faktorisiere aus heraus.
Schritt 3.5.1.4.2
Schreibe als um.
Schritt 3.5.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 3.5.2
Mutltipliziere mit .
Schritt 3.5.3
Vereinfache .
Schritt 3.5.4
Ändere das zu .
Schritt 3.6
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Schritt 3.6.1
Vereinfache den Zähler.
Schritt 3.6.1.1
Potenziere mit .
Schritt 3.6.1.2
Multipliziere .
Schritt 3.6.1.2.1
Mutltipliziere mit .
Schritt 3.6.1.2.2
Mutltipliziere mit .
Schritt 3.6.1.3
Addiere und .
Schritt 3.6.1.4
Schreibe als um.
Schritt 3.6.1.4.1
Faktorisiere aus heraus.
Schritt 3.6.1.4.2
Schreibe als um.
Schritt 3.6.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 3.6.2
Mutltipliziere mit .
Schritt 3.6.3
Vereinfache .
Schritt 3.6.4
Ändere das zu .
Schritt 3.7
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 4
Schritt 4.1
Ersetze alle in durch .
Schritt 4.2
Vereinfache die rechte Seite.
Schritt 4.2.1
Vereinfache .
Schritt 4.2.1.1
Vereinfache den Ausdruck.
Schritt 4.2.1.1.1
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 4.2.1.1.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.1.2
Vereinfache den Zähler.
Schritt 4.2.1.2.1
Wende das Distributivgesetz an.
Schritt 4.2.1.2.2
Mutltipliziere mit .
Schritt 4.2.1.2.3
Subtrahiere von .
Schritt 5
Schritt 5.1
Ersetze alle in durch .
Schritt 5.2
Vereinfache die rechte Seite.
Schritt 5.2.1
Vereinfache .
Schritt 5.2.1.1
Vereinfache den Ausdruck.
Schritt 5.2.1.1.1
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 5.2.1.1.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.1.2
Vereinfache den Zähler.
Schritt 5.2.1.2.1
Wende das Distributivgesetz an.
Schritt 5.2.1.2.2
Mutltipliziere mit .
Schritt 5.2.1.2.3
Multipliziere .
Schritt 5.2.1.2.3.1
Mutltipliziere mit .
Schritt 5.2.1.2.3.2
Mutltipliziere mit .
Schritt 5.2.1.2.4
Subtrahiere von .
Schritt 6
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 7
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 8