Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
,
Schritt 1
Schritt 1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.2
Vereinfache die linke Seite.
Schritt 1.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.1.2
Dividiere durch .
Schritt 1.2.3
Vereinfache die rechte Seite.
Schritt 1.2.3.1
Dividiere durch .
Schritt 2
Schritt 2.1
Ersetze alle in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Vereinfache .
Schritt 2.2.1.1
Schreibe als um.
Schritt 2.2.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 2.2.1.2.1
Wende das Distributivgesetz an.
Schritt 2.2.1.2.2
Wende das Distributivgesetz an.
Schritt 2.2.1.2.3
Wende das Distributivgesetz an.
Schritt 2.2.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 2.2.1.3.1
Vereinfache jeden Term.
Schritt 2.2.1.3.1.1
Mutltipliziere mit .
Schritt 2.2.1.3.1.2
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.3.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.3.1.2.2
Forme den Ausdruck um.
Schritt 2.2.1.3.1.3
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.3.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.3.1.3.2
Forme den Ausdruck um.
Schritt 2.2.1.3.1.4
Multipliziere .
Schritt 2.2.1.3.1.4.1
Mutltipliziere mit .
Schritt 2.2.1.3.1.4.2
Potenziere mit .
Schritt 2.2.1.3.1.4.3
Potenziere mit .
Schritt 2.2.1.3.1.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.1.3.1.4.5
Addiere und .
Schritt 2.2.1.3.1.4.6
Mutltipliziere mit .
Schritt 2.2.1.3.2
Addiere und .
Schritt 3
Schritt 3.1
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Schritt 3.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.1.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 3.1.2.1
Subtrahiere von .
Schritt 3.1.2.2
Addiere und .
Schritt 3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 3.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2.2
Subtrahiere von .
Schritt 3.3
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.4
Vereinfache beide Seiten der Gleichung.
Schritt 3.4.1
Vereinfache die linke Seite.
Schritt 3.4.1.1
Kürze den gemeinsamen Faktor von .
Schritt 3.4.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.1.1.2
Forme den Ausdruck um.
Schritt 3.4.2
Vereinfache die rechte Seite.
Schritt 3.4.2.1
Mutltipliziere mit .
Schritt 3.5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 3.6
Vereinfache .
Schritt 3.6.1
Schreibe als um.
Schritt 3.6.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3.7
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3.7.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.7.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.7.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4
Schritt 4.1
Ersetze alle in durch .
Schritt 4.2
Vereinfache die rechte Seite.
Schritt 4.2.1
Vereinfache .
Schritt 4.2.1.1
Dividiere durch .
Schritt 4.2.1.2
Addiere und .
Schritt 5
Schritt 5.1
Ersetze alle in durch .
Schritt 5.2
Vereinfache die rechte Seite.
Schritt 5.2.1
Vereinfache .
Schritt 5.2.1.1
Dividiere durch .
Schritt 5.2.1.2
Subtrahiere von .
Schritt 6
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 7
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 8