Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Schritt 1.1
Vereinfache jeden Term.
Schritt 1.1.1
Wende das Distributivgesetz an.
Schritt 1.1.2
Mutltipliziere mit .
Schritt 1.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 1.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.3.1
Teile jeden Ausdruck in durch .
Schritt 1.3.2
Vereinfache die linke Seite.
Schritt 1.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.2.1.2
Dividiere durch .
Schritt 1.3.3
Vereinfache die rechte Seite.
Schritt 1.3.3.1
Vereinfache jeden Term.
Schritt 1.3.3.1.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.3.3.1.2
Dividiere durch .
Schritt 1.3.3.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.3.3.3
Kombiniere und .
Schritt 1.3.3.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.3.3.5
Mutltipliziere mit .
Schritt 1.3.3.6
Faktorisiere aus heraus.
Schritt 1.3.3.7
Schreibe als um.
Schritt 1.3.3.8
Faktorisiere aus heraus.
Schritt 1.3.3.9
Vereinfache den Ausdruck.
Schritt 1.3.3.9.1
Schreibe als um.
Schritt 1.3.3.9.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2
Schritt 2.1
Schreibe die Gleichung in Scheitelform um.
Schritt 2.1.1
Isoliere auf die linke Seite der Gleichung.
Schritt 2.1.1.1
Kehre das Vorzeichen von um.
Schritt 2.1.1.2
Stelle die Terme um.
Schritt 2.1.2
Wende die quadratische Ergänzung auf an.
Schritt 2.1.2.1
Vereinfache den Ausdruck.
Schritt 2.1.2.1.1
Vereinfache jeden Term.
Schritt 2.1.2.1.1.1
Schreibe als um.
Schritt 2.1.2.1.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 2.1.2.1.1.2.1
Wende das Distributivgesetz an.
Schritt 2.1.2.1.1.2.2
Wende das Distributivgesetz an.
Schritt 2.1.2.1.1.2.3
Wende das Distributivgesetz an.
Schritt 2.1.2.1.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 2.1.2.1.1.3.1
Vereinfache jeden Term.
Schritt 2.1.2.1.1.3.1.1
Mutltipliziere mit .
Schritt 2.1.2.1.1.3.1.2
Bringe auf die linke Seite von .
Schritt 2.1.2.1.1.3.1.3
Schreibe als um.
Schritt 2.1.2.1.1.3.1.4
Schreibe als um.
Schritt 2.1.2.1.1.3.1.5
Mutltipliziere mit .
Schritt 2.1.2.1.1.3.2
Subtrahiere von .
Schritt 2.1.2.1.2
Addiere und .
Schritt 2.1.2.1.3
Wende das Distributivgesetz an.
Schritt 2.1.2.1.4
Vereinfache.
Schritt 2.1.2.1.4.1
Kombiniere und .
Schritt 2.1.2.1.4.2
Kürze den gemeinsamen Faktor von .
Schritt 2.1.2.1.4.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.1.2.1.4.2.2
Faktorisiere aus heraus.
Schritt 2.1.2.1.4.2.3
Faktorisiere aus heraus.
Schritt 2.1.2.1.4.2.4
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.1.4.2.5
Forme den Ausdruck um.
Schritt 2.1.2.1.4.3
Kombiniere und .
Schritt 2.1.2.1.4.4
Multipliziere .
Schritt 2.1.2.1.4.4.1
Mutltipliziere mit .
Schritt 2.1.2.1.4.4.2
Kombiniere und .
Schritt 2.1.2.1.5
Vereinfache jeden Term.
Schritt 2.1.2.1.5.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.1.2.1.5.2
Multipliziere .
Schritt 2.1.2.1.5.2.1
Mutltipliziere mit .
Schritt 2.1.2.1.5.2.2
Mutltipliziere mit .
Schritt 2.1.2.1.5.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.1.2.2
Wende die Form an, um die Werte für , und zu ermitteln.
Schritt 2.1.2.3
Betrachte die Scheitelform einer Parabel.
Schritt 2.1.2.4
Ermittle den Wert von mithilfe der Formel .
Schritt 2.1.2.4.1
Setze die Werte von und in die Formel ein.
Schritt 2.1.2.4.2
Vereinfache die rechte Seite.
Schritt 2.1.2.4.2.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 2.1.2.4.2.2
Kürze den gemeinsamen Teiler von und .
Schritt 2.1.2.4.2.2.1
Schreibe als um.
Schritt 2.1.2.4.2.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.1.2.4.2.3
Kombiniere und .
Schritt 2.1.2.4.2.4
Kürze den gemeinsamen Teiler von und .
Schritt 2.1.2.4.2.4.1
Faktorisiere aus heraus.
Schritt 2.1.2.4.2.4.2
Kürze die gemeinsamen Faktoren.
Schritt 2.1.2.4.2.4.2.1
Faktorisiere aus heraus.
Schritt 2.1.2.4.2.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.4.2.4.2.3
Forme den Ausdruck um.
Schritt 2.1.2.4.2.5
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 2.1.2.4.2.6
Kürze den gemeinsamen Faktor von .
Schritt 2.1.2.4.2.6.1
Faktorisiere aus heraus.
Schritt 2.1.2.4.2.6.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.4.2.6.3
Forme den Ausdruck um.
Schritt 2.1.2.4.2.7
Mutltipliziere mit .
Schritt 2.1.2.5
Ermittle den Wert von mithilfe der Formel .
Schritt 2.1.2.5.1
Setze die Werte von , , und in die Formel ein.
Schritt 2.1.2.5.2
Vereinfache die rechte Seite.
Schritt 2.1.2.5.2.1
Vereinfache jeden Term.
Schritt 2.1.2.5.2.1.1
Vereinfache den Zähler.
Schritt 2.1.2.5.2.1.1.1
Wende die Produktregel auf an.
Schritt 2.1.2.5.2.1.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 2.1.2.5.2.1.1.3
Potenziere mit .
Schritt 2.1.2.5.2.1.2
Vereinfache den Nenner.
Schritt 2.1.2.5.2.1.2.1
Mutltipliziere mit .
Schritt 2.1.2.5.2.1.2.2
Kombiniere und .
Schritt 2.1.2.5.2.1.3
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 2.1.2.5.2.1.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 2.1.2.5.2.1.3.1.1
Faktorisiere aus heraus.
Schritt 2.1.2.5.2.1.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 2.1.2.5.2.1.3.1.2.1
Faktorisiere aus heraus.
Schritt 2.1.2.5.2.1.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.5.2.1.3.1.2.3
Forme den Ausdruck um.
Schritt 2.1.2.5.2.1.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.1.2.5.2.1.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 2.1.2.5.2.1.5
Kürze den gemeinsamen Faktor von .
Schritt 2.1.2.5.2.1.5.1
Faktorisiere aus heraus.
Schritt 2.1.2.5.2.1.5.2
Faktorisiere aus heraus.
Schritt 2.1.2.5.2.1.5.3
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.5.2.1.5.4
Forme den Ausdruck um.
Schritt 2.1.2.5.2.1.6
Kombiniere und .
Schritt 2.1.2.5.2.1.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.1.2.5.2.1.8
Multipliziere .
Schritt 2.1.2.5.2.1.8.1
Mutltipliziere mit .
Schritt 2.1.2.5.2.1.8.2
Mutltipliziere mit .
Schritt 2.1.2.5.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.1.2.5.2.3
Addiere und .
Schritt 2.1.2.5.2.4
Dividiere durch .
Schritt 2.1.2.6
Setze die Werte von , und in die Scheitelform ein.
Schritt 2.1.3
Setze gleich der neuen rechten Seite.
Schritt 2.2
Benutze die Scheitelpunktform, , um die Werte von , und zu ermitteln.
Schritt 2.3
Da der Wert von negativ ist, ist die Parabel nach unten geöffnet.
Öffnet nach unten
Schritt 2.4
Ermittle den Scheitelpunkt .
Schritt 2.5
Berechne , den Abstand vom Scheitelpunkt zum Brennpunkt.
Schritt 2.5.1
Ermittle den Abstand vom Scheitelpunkt zu einem Brennpunkt der Parabel durch Anwendung der folgenden Formel.
Schritt 2.5.2
Setze den Wert von in die Formel ein.
Schritt 2.5.3
Vereinfache.
Schritt 2.5.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 2.5.3.1.1
Schreibe als um.
Schritt 2.5.3.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.5.3.2
Kombiniere und .
Schritt 2.5.3.3
Kürze den gemeinsamen Teiler von und .
Schritt 2.5.3.3.1
Faktorisiere aus heraus.
Schritt 2.5.3.3.2
Kürze die gemeinsamen Faktoren.
Schritt 2.5.3.3.2.1
Faktorisiere aus heraus.
Schritt 2.5.3.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.5.3.3.2.3
Forme den Ausdruck um.
Schritt 2.5.3.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 2.5.3.5
Multipliziere .
Schritt 2.5.3.5.1
Mutltipliziere mit .
Schritt 2.5.3.5.2
Mutltipliziere mit .
Schritt 2.6
Ermittle den Brennpunkt.
Schritt 2.6.1
Der Brennpunkt einer Parabel kann durch Addieren von zur y-Koordinate ermittelt werden, wenn die Parabel nach oben oder unten geöffnet ist.
Schritt 2.6.2
Setze die bekannten Werte von , und in die Formel ein und vereinfache.
Schritt 2.7
Finde die Symmtrieachse durch Ermitteln der Geraden, die durch den Scheitelpunkt und den Brennpunkt verläuft.
Schritt 2.8
Finde die Leitlinie.
Schritt 2.8.1
Die Leitlinie einer Parabel ist die horizontale Gerade, die durch Subtrahieren von von der y-Koordinate des Scheitelpunkts ermittelt wird, wenn die Parabel nach oben oder unten geöffnet ist.
Schritt 2.8.2
Setze die bekannten Werte von und in die Formel ein und vereinfache.
Schritt 2.9
Wende die Eigenschaften der Parabel an, um die Parabel zu analysieren und graphisch darzustellen.
Richtung: Nach unten offen
Scheitelpunkt:
Brennpunkt:
Symmetrieachse:
Leitlinie:
Richtung: Nach unten offen
Scheitelpunkt:
Brennpunkt:
Symmetrieachse:
Leitlinie:
Schritt 3
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache das Ergebnis.
Schritt 3.2.1
Vereinfache den Zähler.
Schritt 3.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 3.2.1.2
Mutltipliziere mit .
Schritt 3.2.1.3
Addiere und .
Schritt 3.2.1.4
Addiere und .
Schritt 3.2.2
Die endgültige Lösung ist .
Schritt 3.3
Der -Wert bei ist .
Schritt 3.4
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.5
Vereinfache das Ergebnis.
Schritt 3.5.1
Vereinfache den Zähler.
Schritt 3.5.1.1
Potenziere mit .
Schritt 3.5.1.2
Mutltipliziere mit .
Schritt 3.5.1.3
Addiere und .
Schritt 3.5.1.4
Addiere und .
Schritt 3.5.2
Kürze den gemeinsamen Teiler von und .
Schritt 3.5.2.1
Faktorisiere aus heraus.
Schritt 3.5.2.2
Kürze die gemeinsamen Faktoren.
Schritt 3.5.2.2.1
Faktorisiere aus heraus.
Schritt 3.5.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.5.2.2.3
Forme den Ausdruck um.
Schritt 3.5.3
Die endgültige Lösung ist .
Schritt 3.6
Der -Wert bei ist .
Schritt 3.7
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.8
Vereinfache das Ergebnis.
Schritt 3.8.1
Vereinfache den Zähler.
Schritt 3.8.1.1
Potenziere mit .
Schritt 3.8.1.2
Mutltipliziere mit .
Schritt 3.8.1.3
Subtrahiere von .
Schritt 3.8.1.4
Addiere und .
Schritt 3.8.2
Die endgültige Lösung ist .
Schritt 3.9
Der -Wert bei ist .
Schritt 3.10
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.11
Vereinfache das Ergebnis.
Schritt 3.11.1
Vereinfache den Zähler.
Schritt 3.11.1.1
Potenziere mit .
Schritt 3.11.1.2
Mutltipliziere mit .
Schritt 3.11.1.3
Subtrahiere von .
Schritt 3.11.1.4
Addiere und .
Schritt 3.11.2
Kürze den gemeinsamen Teiler von und .
Schritt 3.11.2.1
Faktorisiere aus heraus.
Schritt 3.11.2.2
Kürze die gemeinsamen Faktoren.
Schritt 3.11.2.2.1
Faktorisiere aus heraus.
Schritt 3.11.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.11.2.2.3
Forme den Ausdruck um.
Schritt 3.11.3
Die endgültige Lösung ist .
Schritt 3.12
Der -Wert bei ist .
Schritt 3.13
Zeichne die Parabel anhand ihrer Eigenschaften und der ausgewählten Punkte.
Schritt 4
Zeichne die Parabel anhand ihrer Eigenschaften und der ausgewählten Punkte.
Richtung: Nach unten offen
Scheitelpunkt:
Brennpunkt:
Symmetrieachse:
Leitlinie:
Schritt 5