Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Schritt 1.1
Setze das Innere des Absolutwertes gleich , um die -Koordinate des Scheitelpunktes zu bestimmen. In diesem Fall: .
Schritt 1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.3
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.4
Vereinfache .
Schritt 1.4.1
Vereinfache jeden Term.
Schritt 1.4.1.1
Addiere und .
Schritt 1.4.1.2
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 1.4.1.3
Mutltipliziere mit .
Schritt 1.4.2
Addiere und .
Schritt 1.5
Die Absolutwert-Spitze ist .
Schritt 2
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 3
Schritt 3.1
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Schritt 3.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.1.2
Vereinfache das Ergebnis.
Schritt 3.1.2.1
Vereinfache jeden Term.
Schritt 3.1.2.1.1
Addiere und .
Schritt 3.1.2.1.2
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.1.2.1.3
Mutltipliziere mit .
Schritt 3.1.2.2
Addiere und .
Schritt 3.1.2.3
Die endgültige Lösung ist .
Schritt 3.2
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Schritt 3.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2.2
Vereinfache das Ergebnis.
Schritt 3.2.2.1
Vereinfache jeden Term.
Schritt 3.2.2.1.1
Addiere und .
Schritt 3.2.2.1.2
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.2.2.1.3
Mutltipliziere mit .
Schritt 3.2.2.2
Addiere und .
Schritt 3.2.2.3
Die endgültige Lösung ist .
Schritt 3.3
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Schritt 3.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.3.2
Vereinfache das Ergebnis.
Schritt 3.3.2.1
Vereinfache jeden Term.
Schritt 3.3.2.1.1
Addiere und .
Schritt 3.3.2.1.2
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.3.2.1.3
Mutltipliziere mit .
Schritt 3.3.2.2
Addiere und .
Schritt 3.3.2.3
Die endgültige Lösung ist .
Schritt 3.4
Der Absolutwert kann mithilfe der Punkte um den Scheitelpunkt graphisch dargestellt werden.
Schritt 4