Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
,
Schritt 1
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.2
Vereinfache die linke Seite.
Schritt 1.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.1.2
Dividiere durch .
Schritt 1.2.3
Vereinfache die rechte Seite.
Schritt 1.2.3.1
Vereinfache jeden Term.
Schritt 1.2.3.1.1
Dividiere durch .
Schritt 1.2.3.1.2
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2
Schritt 2.1
Ersetze alle in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Vereinfache .
Schritt 2.2.1.1
Vereinfache jeden Term.
Schritt 2.2.1.1.1
Schreibe als um.
Schritt 2.2.1.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 2.2.1.1.2.1
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2.2
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2.3
Wende das Distributivgesetz an.
Schritt 2.2.1.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 2.2.1.1.3.1
Vereinfache jeden Term.
Schritt 2.2.1.1.3.1.1
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.2
Kombiniere und .
Schritt 2.2.1.1.3.1.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.1.1.3.1.4
Kombiniere und .
Schritt 2.2.1.1.3.1.5
Bringe auf die linke Seite von .
Schritt 2.2.1.1.3.1.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.1.1.3.1.7
Kombinieren.
Schritt 2.2.1.1.3.1.8
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.2.1.1.3.1.8.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.1.1.3.1.8.2
Addiere und .
Schritt 2.2.1.1.3.1.9
Mutltipliziere mit .
Schritt 2.2.1.1.3.2
Subtrahiere von .
Schritt 2.2.1.1.4
Vereinfache jeden Term.
Schritt 2.2.1.1.4.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1.4.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.1.4.1.2
Faktorisiere aus heraus.
Schritt 2.2.1.1.4.1.3
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.1.4.1.4
Forme den Ausdruck um.
Schritt 2.2.1.1.4.2
Schreibe als um.
Schritt 2.2.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2.1.3
Kombiniere und .
Schritt 2.2.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.1.5
Subtrahiere von .
Schritt 2.2.1.5.1
Stelle und um.
Schritt 2.2.1.5.2
Subtrahiere von .
Schritt 2.2.1.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 3
Schritt 3.1
Setze in die Gleichung ein. Das macht die Quadratformel leicht anzuwenden.
Schritt 3.2
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Schritt 3.2.1
Multipliziere jeden Term in mit .
Schritt 3.2.2
Vereinfache die linke Seite.
Schritt 3.2.2.1
Vereinfache jeden Term.
Schritt 3.2.2.1.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.1.2
Forme den Ausdruck um.
Schritt 3.2.2.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.2.2.1.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.2.1.2.2
Faktorisiere aus heraus.
Schritt 3.2.2.1.2.3
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.2.4
Forme den Ausdruck um.
Schritt 3.2.2.1.3
Mutltipliziere mit .
Schritt 3.2.2.1.4
Mutltipliziere mit .
Schritt 3.2.3
Vereinfache die rechte Seite.
Schritt 3.2.3.1
Mutltipliziere mit .
Schritt 3.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 3.4.1
Subtrahiere von .
Schritt 3.4.2
Addiere und .
Schritt 3.5
Faktorisiere aus heraus.
Schritt 3.5.1
Faktorisiere aus heraus.
Schritt 3.5.2
Faktorisiere aus heraus.
Schritt 3.5.3
Faktorisiere aus heraus.
Schritt 3.6
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.7
Setze gleich .
Schritt 3.8
Setze gleich und löse nach auf.
Schritt 3.8.1
Setze gleich .
Schritt 3.8.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.9
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3.10
Rücksubstituiere den tatsächlichen Wert von in die gelöste Gleichung.
Schritt 3.11
Löse die erste Gleichung nach auf.
Schritt 3.12
Löse die Gleichung nach auf.
Schritt 3.12.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.12.2
Vereinfache .
Schritt 3.12.2.1
Schreibe als um.
Schritt 3.12.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3.12.2.3
Plus oder Minus ist .
Schritt 3.13
Löse die zweite Gleichung nach auf.
Schritt 3.14
Löse die Gleichung nach auf.
Schritt 3.14.1
Entferne die Klammern.
Schritt 3.14.2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.14.3
Vereinfache .
Schritt 3.14.3.1
Schreibe als um.
Schritt 3.14.3.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3.14.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3.14.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.14.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.14.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3.15
Die Lösung von ist .
Schritt 4
Schritt 4.1
Ersetze alle in durch .
Schritt 4.2
Vereinfache die rechte Seite.
Schritt 4.2.1
Vereinfache .
Schritt 4.2.1.1
Vereinfache jeden Term.
Schritt 4.2.1.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.2.1.1.2
Dividiere durch .
Schritt 4.2.1.2
Addiere und .
Schritt 5
Schritt 5.1
Ersetze alle in durch .
Schritt 5.2
Vereinfache die rechte Seite.
Schritt 5.2.1
Vereinfache .
Schritt 5.2.1.1
Vereinfache jeden Term.
Schritt 5.2.1.1.1
Potenziere mit .
Schritt 5.2.1.1.2
Dividiere durch .
Schritt 5.2.1.2
Addiere und .
Schritt 6
Schritt 6.1
Ersetze alle in durch .
Schritt 6.2
Vereinfache die rechte Seite.
Schritt 6.2.1
Vereinfache .
Schritt 6.2.1.1
Vereinfache jeden Term.
Schritt 6.2.1.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 6.2.1.1.2
Dividiere durch .
Schritt 6.2.1.2
Addiere und .
Schritt 7
Schritt 7.1
Ersetze alle in durch .
Schritt 7.2
Vereinfache die rechte Seite.
Schritt 7.2.1
Vereinfache .
Schritt 7.2.1.1
Vereinfache jeden Term.
Schritt 7.2.1.1.1
Potenziere mit .
Schritt 7.2.1.1.2
Dividiere durch .
Schritt 7.2.1.2
Addiere und .
Schritt 8
Schritt 8.1
Ersetze alle in durch .
Schritt 8.2
Vereinfache die rechte Seite.
Schritt 8.2.1
Vereinfache .
Schritt 8.2.1.1
Vereinfache jeden Term.
Schritt 8.2.1.1.1
Potenziere mit .
Schritt 8.2.1.1.2
Dividiere durch .
Schritt 8.2.1.2
Addiere und .
Schritt 9
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 10
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 11