Elementarmathematik Beispiele

Bestimme den Differenzenquotienten f(x)=4x^3
Schritt 1
Ziehe die Differenzenquotient-Formel in Betracht.
Schritt 2
Bestimme die Komponenten der Definition.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Berechne die Funktion bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 2.1.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Wende den binomischen Lehrsatz an.
Schritt 2.1.2.2
Wende das Distributivgesetz an.
Schritt 2.1.2.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.3.1
Mutltipliziere mit .
Schritt 2.1.2.3.2
Mutltipliziere mit .
Schritt 2.1.2.4
Entferne die Klammern.
Schritt 2.1.2.5
Die endgültige Lösung ist .
Schritt 2.2
Stelle um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Bewege .
Schritt 2.2.2
Bewege .
Schritt 2.2.3
Bewege .
Schritt 2.2.4
Bewege .
Schritt 2.2.5
Stelle und um.
Schritt 2.3
Bestimme die Komponenten der Definition.
Schritt 3
Setze die Komponenten ein.
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Mutltipliziere mit .
Schritt 4.1.2
Subtrahiere von .
Schritt 4.1.3
Addiere und .
Schritt 4.1.4
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.4.1
Faktorisiere aus heraus.
Schritt 4.1.4.2
Faktorisiere aus heraus.
Schritt 4.1.4.3
Faktorisiere aus heraus.
Schritt 4.1.4.4
Faktorisiere aus heraus.
Schritt 4.1.4.5
Faktorisiere aus heraus.
Schritt 4.2
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.2
Dividiere durch .
Schritt 4.2.2
Wende das Distributivgesetz an.
Schritt 4.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Mutltipliziere mit .
Schritt 4.3.2
Mutltipliziere mit .
Schritt 4.4
Bewege .
Schritt 4.5
Bewege .
Schritt 4.6
Stelle und um.
Schritt 5