Elementarmathematik Beispiele

Zerlege unter Anwendung der Partialbruchzerlegung 7/(x^2-14x)
Schritt 1
Zerlege den Bruch und multipliziere mit dem gemeinsamen Nenner durch.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Faktorisiere aus heraus.
Schritt 1.1.2
Faktorisiere aus heraus.
Schritt 1.1.3
Faktorisiere aus heraus.
Schritt 1.2
Bilde für jeden Faktor im Nenner einen neuen Bruch mit dem Faktor als Nenner und einem unbekannten Wert als Zähler. Da der Faktor im Nenner linear ist, setze eine einzelne Variable für den Zähler ein .
Schritt 1.3
Multipliziere jeden Bruch in der Gleichung mit dem Nenner des ursprünglichen Ausdrucks. In diesem Fall ist der Nenner gleich .
Schritt 1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.4.2
Forme den Ausdruck um.
Schritt 1.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Kürze den gemeinsamen Faktor.
Schritt 1.5.2
Dividiere durch .
Schritt 1.6
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.6.1.2
Dividiere durch .
Schritt 1.6.2
Wende das Distributivgesetz an.
Schritt 1.6.3
Bringe auf die linke Seite von .
Schritt 1.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.6.4.2
Dividiere durch .
Schritt 1.7
Bewege .
Schritt 2
Schreibe Gleichungen für die Teilbruchvariablen und benutze sie, um ein Gleichungssystem aufzustellen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten von jeder Seite der Gleichung. Damit die Gleichung gilt, müssen äquivalente Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 2.2
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten der Terme, die nicht enthalten. Damit die Gleichung gilt, müssen die äquivalenten Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 2.3
Stelle das Gleichungssystem auf, um die Koeffizienten der Partialbrüche zu ermitteln.
Schritt 3
Löse das Gleichungssystem.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Schreibe die Gleichung als um.
Schritt 3.1.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Teile jeden Ausdruck in durch .
Schritt 3.1.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.2.1.2
Dividiere durch .
Schritt 3.1.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.3.1.1
Faktorisiere aus heraus.
Schritt 3.1.2.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.3.1.2.1
Faktorisiere aus heraus.
Schritt 3.1.2.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.3.1.2.3
Forme den Ausdruck um.
Schritt 3.1.2.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.2
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Ersetze alle in durch .
Schritt 3.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Entferne die Klammern.
Schritt 3.3
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Schreibe die Gleichung als um.
Schritt 3.3.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.4
Löse das Gleichungssystem.
Schritt 3.5
Liste alle Lösungen auf.
Schritt 4
Ersetze jeden der Teilbruchkoeffizienten in durch die Werte, die für und ermittelt wurden.