Elementarmathematik Beispiele

Zerlege unter Anwendung der Partialbruchzerlegung (9x^2-9x+6)/(2x^3-x^2-8x+4)
Schritt 1
Zerlege den Bruch und multipliziere mit dem gemeinsamen Nenner durch.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Faktorisiere den Bruch.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Faktorisiere aus heraus.
Schritt 1.1.1.2
Faktorisiere aus heraus.
Schritt 1.1.1.3
Faktorisiere aus heraus.
Schritt 1.1.1.4
Faktorisiere aus heraus.
Schritt 1.1.1.5
Faktorisiere aus heraus.
Schritt 1.1.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 1.1.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 1.1.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 1.1.4
Schreibe als um.
Schritt 1.1.5
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.5.1
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 1.1.5.2
Entferne unnötige Klammern.
Schritt 1.2
Bilde für jeden Faktor im Nenner einen neuen Bruch mit dem Faktor als Nenner und einem unbekannten Wert als Zähler. Da der Faktor im Nenner linear ist, setze eine einzelne Variable für den Zähler ein .
Schritt 1.3
Bilde für jeden Faktor im Nenner einen neuen Bruch mit dem Faktor als Nenner und einem unbekannten Wert als Zähler. Da der Faktor im Nenner linear ist, setze eine einzelne Variable für den Zähler ein .
Schritt 1.4
Bilde für jeden Faktor im Nenner einen neuen Bruch mit dem Faktor als Nenner und einem unbekannten Wert als Zähler. Da der Faktor im Nenner linear ist, setze eine einzelne Variable für den Zähler ein .
Schritt 1.5
Multipliziere jeden Bruch in der Gleichung mit dem Nenner des ursprünglichen Ausdrucks. In diesem Fall ist der Nenner gleich .
Schritt 1.6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.1
Kürze den gemeinsamen Faktor.
Schritt 1.6.2
Forme den Ausdruck um.
Schritt 1.7
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.1
Kürze den gemeinsamen Faktor.
Schritt 1.7.2
Forme den Ausdruck um.
Schritt 1.8
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.8.1
Kürze den gemeinsamen Faktor.
Schritt 1.8.2
Dividiere durch .
Schritt 1.9
Wende das Distributivgesetz an.
Schritt 1.10
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.10.1
Mutltipliziere mit .
Schritt 1.10.2
Mutltipliziere mit .
Schritt 1.10.3
Mutltipliziere mit .
Schritt 1.11
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.11.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.11.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.11.1.2
Dividiere durch .
Schritt 1.11.2
Wende das Distributivgesetz an.
Schritt 1.11.3
Bringe auf die linke Seite von .
Schritt 1.11.4
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.11.4.1
Wende das Distributivgesetz an.
Schritt 1.11.4.2
Wende das Distributivgesetz an.
Schritt 1.11.4.3
Wende das Distributivgesetz an.
Schritt 1.11.5
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.11.5.1
Ordne die Faktoren in den Termen und neu an.
Schritt 1.11.5.2
Addiere und .
Schritt 1.11.5.3
Addiere und .
Schritt 1.11.6
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.11.6.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.11.6.1.1
Bewege .
Schritt 1.11.6.1.2
Mutltipliziere mit .
Schritt 1.11.6.2
Mutltipliziere mit .
Schritt 1.11.7
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.11.7.1
Kürze den gemeinsamen Faktor.
Schritt 1.11.7.2
Dividiere durch .
Schritt 1.11.8
Wende das Distributivgesetz an.
Schritt 1.11.9
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.11.10
Bringe auf die linke Seite von .
Schritt 1.11.11
Schreibe als um.
Schritt 1.11.12
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.11.12.1
Wende das Distributivgesetz an.
Schritt 1.11.12.2
Wende das Distributivgesetz an.
Schritt 1.11.12.3
Wende das Distributivgesetz an.
Schritt 1.11.13
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.11.13.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.11.13.1.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.11.13.1.1.1
Bewege .
Schritt 1.11.13.1.1.2
Mutltipliziere mit .
Schritt 1.11.13.1.2
Mutltipliziere mit .
Schritt 1.11.13.1.3
Mutltipliziere mit .
Schritt 1.11.13.2
Subtrahiere von .
Schritt 1.11.14
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.11.14.1
Kürze den gemeinsamen Faktor.
Schritt 1.11.14.2
Dividiere durch .
Schritt 1.11.15
Wende das Distributivgesetz an.
Schritt 1.11.16
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.11.17
Bringe auf die linke Seite von .
Schritt 1.11.18
Schreibe als um.
Schritt 1.11.19
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.11.19.1
Wende das Distributivgesetz an.
Schritt 1.11.19.2
Wende das Distributivgesetz an.
Schritt 1.11.19.3
Wende das Distributivgesetz an.
Schritt 1.11.20
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.11.20.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.11.20.1.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.11.20.1.1.1
Bewege .
Schritt 1.11.20.1.1.2
Mutltipliziere mit .
Schritt 1.11.20.1.2
Mutltipliziere mit .
Schritt 1.11.20.1.3
Mutltipliziere mit .
Schritt 1.11.20.2
Subtrahiere von .
Schritt 1.12
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.12.1
Bewege .
Schritt 1.12.2
Bewege .
Schritt 1.12.3
Bewege .
Schritt 1.12.4
Bewege .
Schritt 1.12.5
Bewege .
Schritt 2
Schreibe Gleichungen für die Teilbruchvariablen und benutze sie, um ein Gleichungssystem aufzustellen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten von jeder Seite der Gleichung. Damit die Gleichung gilt, müssen äquivalente Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 2.2
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten von jeder Seite der Gleichung. Damit die Gleichung gilt, müssen äquivalente Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 2.3
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten der Terme, die nicht enthalten. Damit die Gleichung gilt, müssen die äquivalenten Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 2.4
Stelle das Gleichungssystem auf, um die Koeffizienten der Partialbrüche zu ermitteln.
Schritt 3
Löse das Gleichungssystem.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Schreibe die Gleichung als um.
Schritt 3.1.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.1.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Ersetze alle in durch .
Schritt 3.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.1.1
Wende das Distributivgesetz an.
Schritt 3.2.2.1.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.1.2.1
Mutltipliziere mit .
Schritt 3.2.2.1.1.2.2
Mutltipliziere mit .
Schritt 3.2.2.1.1.2.3
Mutltipliziere mit .
Schritt 3.2.2.1.2
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.2.1
Addiere und .
Schritt 3.2.2.1.2.2
Subtrahiere von .
Schritt 3.3
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Schreibe die Gleichung als um.
Schritt 3.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.3.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3.2.3
Addiere und .
Schritt 3.3.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.1
Teile jeden Ausdruck in durch .
Schritt 3.3.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.3.2.1.2
Dividiere durch .
Schritt 3.3.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.3.1.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.3.1.1.1
Faktorisiere aus heraus.
Schritt 3.3.3.3.1.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.3.1.1.2.1
Faktorisiere aus heraus.
Schritt 3.3.3.3.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.3.3.1.1.2.3
Forme den Ausdruck um.
Schritt 3.3.3.3.1.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.3.1.2.1
Faktorisiere aus heraus.
Schritt 3.3.3.3.1.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.3.1.2.2.1
Faktorisiere aus heraus.
Schritt 3.3.3.3.1.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.3.3.1.2.2.3
Forme den Ausdruck um.
Schritt 3.3.3.3.1.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.4
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Ersetze alle in durch .
Schritt 3.4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1.1.1
Wende das Distributivgesetz an.
Schritt 3.4.2.1.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1.1.2.1
Kombiniere und .
Schritt 3.4.2.1.1.2.2
Mutltipliziere mit .
Schritt 3.4.2.1.1.3
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1.1.3.1
Mutltipliziere mit .
Schritt 3.4.2.1.1.3.2
Kombiniere und .
Schritt 3.4.2.1.1.3.3
Mutltipliziere mit .
Schritt 3.4.2.1.1.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.4.2.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.4.2.1.3
Kombiniere und .
Schritt 3.4.2.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.4.2.1.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1.5.1
Mutltipliziere mit .
Schritt 3.4.2.1.5.2
Subtrahiere von .
Schritt 3.4.2.1.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.4.2.1.7
Kombiniere und .
Schritt 3.4.2.1.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.4.2.1.9
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.4.2.1.10
Mutltipliziere mit .
Schritt 3.4.2.1.11
Subtrahiere von .
Schritt 3.4.3
Ersetze alle in durch .
Schritt 3.4.4
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.1.1.1
Wende das Distributivgesetz an.
Schritt 3.4.4.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.1.1.2.1
Faktorisiere aus heraus.
Schritt 3.4.4.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.4.4.1.1.2.3
Forme den Ausdruck um.
Schritt 3.4.4.1.1.3
Mutltipliziere mit .
Schritt 3.4.4.1.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.1.1.4.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.4.4.1.1.4.2
Faktorisiere aus heraus.
Schritt 3.4.4.1.1.4.3
Kürze den gemeinsamen Faktor.
Schritt 3.4.4.1.1.4.4
Forme den Ausdruck um.
Schritt 3.4.4.1.1.5
Mutltipliziere mit .
Schritt 3.4.4.1.2
Addiere und .
Schritt 3.5
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Schreibe die Gleichung als um.
Schritt 3.5.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.5.2.2
Addiere und .
Schritt 3.5.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.3.1
Teile jeden Ausdruck in durch .
Schritt 3.5.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.5.3.2.1.2
Dividiere durch .
Schritt 3.5.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.3.3.1
Dividiere durch .
Schritt 3.6
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.1
Ersetze alle in durch .
Schritt 3.6.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.2.1.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.2.1.1.1
Mutltipliziere mit .
Schritt 3.6.2.1.1.2
Subtrahiere von .
Schritt 3.6.2.1.2
Dividiere durch .
Schritt 3.6.3
Ersetze alle in durch .
Schritt 3.6.4
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.4.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.4.1.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.6.4.1.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.4.1.2.1
Mutltipliziere mit .
Schritt 3.6.4.1.2.2
Subtrahiere von .
Schritt 3.6.4.1.2.3
Dividiere durch .
Schritt 3.7
Liste alle Lösungen auf.
Schritt 4
Ersetze jeden Teilbruchkoeffizienten in durch die Werte, die für , und ermittelt wurden.