Elementarmathematik Beispiele

Finde die Asymptoten y=3sec(2x)
Schritt 1
Für jedes existieren vertikale Asymptoten bei , wobei eine Ganzzahl ist. Benutze die Grundperiode für , , um die vertikalen Asymptoten für zu bestimmen. Setze das Innere der Sekans-Funktion, , für gleich , um herauszufinden, wo die vertikale Asymptote für auftritt.
Schritt 2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Teile jeden Ausdruck in durch .
Schritt 2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Dividiere durch .
Schritt 2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 2.3.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Mutltipliziere mit .
Schritt 2.3.2.2
Mutltipliziere mit .
Schritt 3
Setze das Innere der Sekansfunktion gleich .
Schritt 4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Teile jeden Ausdruck in durch .
Schritt 4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.2
Dividiere durch .
Schritt 4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 4.3.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Mutltipliziere mit .
Schritt 4.3.2.2
Mutltipliziere mit .
Schritt 5
Die fundamentale Periode für tritt auf bei , wobei und vertikale Asymptoten sind.
Schritt 6
Ermittle die Periode , um herauszufinden, wo die vertikalen Asymptoten existieren. Vertikale Asymptoten treten jede halbe Periode auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 6.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.2
Dividiere durch .
Schritt 7
Die vertikalen Asymptoten für treten auf bei , und jedem , wobei eine Ganzzahl ist. Das ist die Hälfte der Periode.
Schritt 8
Der Sekans hat nur vertikale Asymptoten.
Keine horizontalen Asymptoten
Keine schiefen Asymptoten
Vertikale Asymptoten: , wobei eine Ganzzahl ist
Schritt 9