Elementarmathematik Beispiele

y 구하기 81y^4+1=18y^2
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Setze in die Gleichung ein. Das macht die Quadratformel leicht anzuwenden.
Schritt 3
Faktorisiere unter Verwendung der binomischen Formeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe als um.
Schritt 3.2
Schreibe als um.
Schritt 3.3
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 3.4
Schreibe das Polynom neu.
Schritt 3.5
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 4
Setze gleich .
Schritt 5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Teile jeden Ausdruck in durch .
Schritt 5.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.1.2
Dividiere durch .
Schritt 6
Rücksubstituiere den tatsächlichen Wert von in die gelöste Gleichung.
Schritt 7
Löse die Gleichung nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 7.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Schreibe als um.
Schritt 7.2.2
Jede Wurzel von ist .
Schritt 7.2.3
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.3.1
Schreibe als um.
Schritt 7.2.3.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 7.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 7.3.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 7.3.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 8
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: