Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Multipliziere beide Seiten mit .
Schritt 2
Schritt 2.1
Vereinfache die linke Seite.
Schritt 2.1.1
Vereinfache .
Schritt 2.1.1.1
Wende das Distributivgesetz an.
Schritt 2.1.1.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.1.1.2.1
Bewege .
Schritt 2.1.1.2.2
Mutltipliziere mit .
Schritt 2.2
Vereinfache die rechte Seite.
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Forme den Ausdruck um.
Schritt 3
Schritt 3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2
Faktorisiere durch Gruppieren.
Schritt 3.2.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Schritt 3.2.1.1
Faktorisiere aus heraus.
Schritt 3.2.1.2
Schreibe um als plus
Schritt 3.2.1.3
Wende das Distributivgesetz an.
Schritt 3.2.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Schritt 3.2.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 3.2.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 3.2.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 3.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.4
Setze gleich und löse nach auf.
Schritt 3.4.1
Setze gleich .
Schritt 3.4.2
Löse nach auf.
Schritt 3.4.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.4.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.4.2.2.1
Teile jeden Ausdruck in durch .
Schritt 3.4.2.2.2
Vereinfache die linke Seite.
Schritt 3.4.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.4.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.2.2.1.2
Dividiere durch .
Schritt 3.4.2.2.3
Vereinfache die rechte Seite.
Schritt 3.4.2.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.5
Setze gleich und löse nach auf.
Schritt 3.5.1
Setze gleich .
Schritt 3.5.2
Löse nach auf.
Schritt 3.5.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.5.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.5.2.2.1
Teile jeden Ausdruck in durch .
Schritt 3.5.2.2.2
Vereinfache die linke Seite.
Schritt 3.5.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.5.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.5.2.2.2.1.2
Dividiere durch .
Schritt 3.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4
Schritt 4.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4.2
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 5
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 6
Schritt 6.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 6.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 6.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 6.1.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 6.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 6.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 6.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 6.2.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 6.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 6.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 6.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 6.3.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 6.4
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 6.4.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 6.4.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 6.4.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 6.5
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Wahr
Falsch
Wahr
Falsch
Wahr
Falsch
Wahr
Falsch
Schritt 7
Die Lösung besteht aus allen wahren Intervallen.
oder
Schritt 8
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Ungleichungsform:
Intervallschreibweise:
Schritt 9