Elementarmathematik Beispiele

Ermittle die Merkmale x^2=-8y
Schritt 1
Schreibe die Gleichung in Scheitelform um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Isoliere auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Schreibe die Gleichung als um.
Schritt 1.1.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Teile jeden Ausdruck in durch .
Schritt 1.1.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.2.2.1.2
Dividiere durch .
Schritt 1.1.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2
Wende die quadratische Ergänzung auf an.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Wende die Form an, um die Werte für , und zu ermitteln.
Schritt 1.2.2
Betrachte die Scheitelform einer Parabel.
Schritt 1.2.3
Ermittle den Wert von mithilfe der Formel .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Setze die Werte von und in die Formel ein.
Schritt 1.2.3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1.1
Faktorisiere aus heraus.
Schritt 1.2.3.2.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.2.1.2.2
Forme den Ausdruck um.
Schritt 1.2.3.2.2
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.2.3.2.3
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.3.1
Mutltipliziere mit .
Schritt 1.2.3.2.3.2
Mutltipliziere mit .
Schritt 1.2.4
Ermittle den Wert von mithilfe der Formel .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1
Setze die Werte von , , und in die Formel ein.
Schritt 1.2.4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.2.4.2.1.2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.1.2.1
Mutltipliziere mit .
Schritt 1.2.4.2.1.2.2
Kombiniere und .
Schritt 1.2.4.2.1.3
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.1.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.1.3.1.1
Faktorisiere aus heraus.
Schritt 1.2.4.2.1.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.1.3.1.2.1
Faktorisiere aus heraus.
Schritt 1.2.4.2.1.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.4.2.1.3.1.2.3
Forme den Ausdruck um.
Schritt 1.2.4.2.1.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2.4.2.1.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.2.4.2.1.5
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.1.5.1
Mutltipliziere mit .
Schritt 1.2.4.2.1.5.2
Mutltipliziere mit .
Schritt 1.2.4.2.1.5.3
Mutltipliziere mit .
Schritt 1.2.4.2.2
Addiere und .
Schritt 1.2.5
Setze die Werte von , und in die Scheitelform ein.
Schritt 1.3
Setze gleich der neuen rechten Seite.
Schritt 2
Benutze die Scheitelpunktform, , um die Werte von , und zu ermitteln.
Schritt 3
Da der Wert von negativ ist, ist die Parabel nach unten geöffnet.
Öffnet nach unten
Schritt 4
Ermittle den Scheitelpunkt .
Schritt 5
Berechne , den Abstand vom Scheitelpunkt zum Brennpunkt.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ermittle den Abstand vom Scheitelpunkt zu einem Brennpunkt der Parabel durch Anwendung der folgenden Formel.
Schritt 5.2
Setze den Wert von in die Formel ein.
Schritt 5.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1.1
Schreibe als um.
Schritt 5.3.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.3.2
Kombiniere und .
Schritt 5.3.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1
Faktorisiere aus heraus.
Schritt 5.3.3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.2.1
Faktorisiere aus heraus.
Schritt 5.3.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.2.3
Forme den Ausdruck um.
Schritt 5.3.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5.3.5
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.5.1
Mutltipliziere mit .
Schritt 5.3.5.2
Mutltipliziere mit .
Schritt 6
Ermittle den Brennpunkt.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Der Brennpunkt einer Parabel kann durch Addieren von zur y-Koordinate ermittelt werden, wenn die Parabel nach oben oder unten geöffnet ist.
Schritt 6.2
Setze die bekannten Werte von , und in die Formel ein und vereinfache.
Schritt 7
Finde die Symmtrieachse durch Ermitteln der Geraden, die durch den Scheitelpunkt und den Brennpunkt verläuft.
Schritt 8
Finde die Leitlinie.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Die Leitlinie einer Parabel ist die horizontale Gerade, die durch Subtrahieren von von der y-Koordinate des Scheitelpunkts ermittelt wird, wenn die Parabel nach oben oder unten geöffnet ist.
Schritt 8.2
Setze die bekannten Werte von und in die Formel ein und vereinfache.
Schritt 9
Wende die Eigenschaften der Parabel an, um die Parabel zu analysieren und graphisch darzustellen.
Richtung: Nach unten offen
Scheitelpunkt:
Brennpunkt:
Symmetrieachse:
Leitlinie:
Schritt 10