Elementarmathematik Beispiele

x 구하기 csc(x) = square root of 2
csc(x)=2
Schritt 1
Wende den inversen Kosekans auf beide Seiten der Gleichung an, um x aus dem Kosekans herauszuziehen.
x=arccsc(2)
Schritt 2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Der genau Wert von arccsc(2) ist π4.
x=π4
x=π4
Schritt 3
Die Kosekansfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von π, um die Lösung im zweiten Quadranten zu finden.
x=π-π4
Schritt 4
Vereinfache π-π4.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um π als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit 44.
x=π44-π4
Schritt 4.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Kombiniere π und 44.
x=π44-π4
Schritt 4.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
x=π4-π4
x=π4-π4
Schritt 4.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Bringe 4 auf die linke Seite von π.
x=4π-π4
Schritt 4.3.2
Subtrahiere π von 4π.
x=3π4
x=3π4
x=3π4
Schritt 5
Ermittele die Periode von csc(x).
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Die Periode der Funktion kann mithilfe von 2π|b| berechnet werden.
2π|b|
Schritt 5.2
Ersetze b durch 1 in der Formel für die Periode.
2π|1|
Schritt 5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen 0 und 1 ist 1.
2π1
Schritt 5.4
Dividiere 2π durch 1.
2π
2π
Schritt 6
Die Periode der Funktion csc(x) ist 2π, d. h., Werte werden sich alle 2π rad in beide Richtungen wiederholen.
x=π4+2πn,3π4+2πn, für jede ganze Zahl n
csc(x)=22
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]