Elementarmathematik Beispiele

Ermittle die Umkehrfunktion f(x)=(2x+1)/x
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 3.2.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Multipliziere jeden Term in mit .
Schritt 3.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.2
Forme den Ausdruck um.
Schritt 3.4
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.4.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.1
Faktorisiere aus heraus.
Schritt 3.4.3.2
Faktorisiere aus heraus.
Schritt 3.4.3.3
Faktorisiere aus heraus.
Schritt 3.4.4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.1
Teile jeden Ausdruck in durch .
Schritt 3.4.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.4.2.1.2
Dividiere durch .
Schritt 3.4.4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 4
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 5
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.2.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.3.3
Schreibe in eine faktorisierte Form um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.3.1
Wende das Distributivgesetz an.
Schritt 5.2.3.3.2
Mutltipliziere mit .
Schritt 5.2.3.3.3
Mutltipliziere mit .
Schritt 5.2.3.3.4
Subtrahiere von .
Schritt 5.2.3.3.5
Subtrahiere von .
Schritt 5.2.3.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.2.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.1
Schreibe als um.
Schritt 5.2.4.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.2.5
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5.2.6
Mutltipliziere mit .
Schritt 5.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5.3.4
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.1.1
Mutltipliziere mit .
Schritt 5.3.4.1.2
Kombiniere und .
Schritt 5.3.4.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.3.5
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.5.1
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 5.3.5.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.3.5.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.3.5.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.5.4.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 5.3.5.4.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.5.4.3
Forme den Ausdruck um.
Schritt 5.3.5.5
Vereinfache durch Addieren von Zahlen.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.5.5.1
Addiere und .
Schritt 5.3.5.5.2
Subtrahiere von .
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .