Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Finde den Hauptnenner der Terme in der Gleichung.
Schritt 3.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 3.2.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Schritt 3.3.1
Multipliziere jeden Term in mit .
Schritt 3.3.2
Vereinfache die linke Seite.
Schritt 3.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.2
Forme den Ausdruck um.
Schritt 3.4
Löse die Gleichung.
Schritt 3.4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.4.3
Faktorisiere aus heraus.
Schritt 3.4.3.1
Faktorisiere aus heraus.
Schritt 3.4.3.2
Faktorisiere aus heraus.
Schritt 3.4.3.3
Faktorisiere aus heraus.
Schritt 3.4.4
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.4.4.1
Teile jeden Ausdruck in durch .
Schritt 3.4.4.2
Vereinfache die linke Seite.
Schritt 3.4.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.4.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.4.2.1.2
Dividiere durch .
Schritt 3.4.4.3
Vereinfache die rechte Seite.
Schritt 3.4.4.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 4
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 5
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Vereinfache den Nenner.
Schritt 5.2.3.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.2.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.3.3
Schreibe in eine faktorisierte Form um.
Schritt 5.2.3.3.1
Wende das Distributivgesetz an.
Schritt 5.2.3.3.2
Mutltipliziere mit .
Schritt 5.2.3.3.3
Mutltipliziere mit .
Schritt 5.2.3.3.4
Subtrahiere von .
Schritt 5.2.3.3.5
Subtrahiere von .
Schritt 5.2.3.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.2.4
Kürze den gemeinsamen Teiler von und .
Schritt 5.2.4.1
Schreibe als um.
Schritt 5.2.4.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.2.5
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5.2.6
Mutltipliziere mit .
Schritt 5.3
Berechne .
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5.3.4
Vereinfache jeden Term.
Schritt 5.3.4.1
Multipliziere .
Schritt 5.3.4.1.1
Mutltipliziere mit .
Schritt 5.3.4.1.2
Kombiniere und .
Schritt 5.3.4.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.3.5
Vereinfache Terme.
Schritt 5.3.5.1
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 5.3.5.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.3.5.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.3.5.4
Kürze den gemeinsamen Faktor von .
Schritt 5.3.5.4.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 5.3.5.4.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.5.4.3
Forme den Ausdruck um.
Schritt 5.3.5.5
Vereinfache durch Addieren von Zahlen.
Schritt 5.3.5.5.1
Addiere und .
Schritt 5.3.5.5.2
Subtrahiere von .
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .