Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Schritt 1.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 1.2
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 1.3
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 1.4
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 1.5
Der Teiler von ist selbst.
occurs time.
Schritt 1.6
Der Teiler von ist selbst.
occurs time.
Schritt 1.7
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Faktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 2
Schritt 2.1
Multipliziere jeden Term in mit .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Vereinfache jeden Term.
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.1.2
Forme den Ausdruck um.
Schritt 2.2.1.2
Wende das Distributivgesetz an.
Schritt 2.2.1.3
Mutltipliziere mit .
Schritt 2.2.1.4
Mutltipliziere mit .
Schritt 2.2.1.5
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.5.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.2.1.5.2
Faktorisiere aus heraus.
Schritt 2.2.1.5.3
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.5.4
Forme den Ausdruck um.
Schritt 2.2.1.6
Wende das Distributivgesetz an.
Schritt 2.2.1.7
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.2.1.8
Mutltipliziere mit .
Schritt 2.2.1.9
Vereinfache jeden Term.
Schritt 2.2.1.9.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.2.1.9.1.1
Bewege .
Schritt 2.2.1.9.1.2
Mutltipliziere mit .
Schritt 2.2.1.9.2
Mutltipliziere mit .
Schritt 2.2.2
Subtrahiere von .
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 2.3.1.1
Wende das Distributivgesetz an.
Schritt 2.3.1.2
Wende das Distributivgesetz an.
Schritt 2.3.1.3
Wende das Distributivgesetz an.
Schritt 2.3.2
Vereinfache Terme.
Schritt 2.3.2.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 2.3.2.1.1
Ordne die Faktoren in den Termen und neu an.
Schritt 2.3.2.1.2
Addiere und .
Schritt 2.3.2.1.3
Addiere und .
Schritt 2.3.2.2
Vereinfache jeden Term.
Schritt 2.3.2.2.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.3.2.2.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.3.2.2.2.1
Bewege .
Schritt 2.3.2.2.2.2
Mutltipliziere mit .
Schritt 2.3.2.2.3
Mutltipliziere mit .
Schritt 2.3.2.2.4
Mutltipliziere mit .
Schritt 2.3.2.3
Vereinfache durch Ausmultiplizieren.
Schritt 2.3.2.3.1
Wende das Distributivgesetz an.
Schritt 2.3.2.3.2
Multipliziere.
Schritt 2.3.2.3.2.1
Mutltipliziere mit .
Schritt 2.3.2.3.2.2
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Schritt 3.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.1.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 3.1.2.1
Addiere und .
Schritt 3.1.2.2
Addiere und .
Schritt 3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.2.2
Addiere und .
Schritt 3.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.3.1
Teile jeden Ausdruck in durch .
Schritt 3.3.2
Vereinfache die linke Seite.
Schritt 3.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.2
Dividiere durch .
Schritt 4
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Darstellung als gemischte Zahl: