Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Schritt 1.1
Um den/die Schnittpunkt(e) mit der x-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 1.2
Löse die Gleichung.
Schritt 1.2.1
Schreibe die Gleichung als um.
Schritt 1.2.2
Wende den inversen Kotangens auf beide Seiten der Gleichung an, um aus dem Kotangens herauszuziehen.
Schritt 1.2.3
Vereinfache die rechte Seite.
Schritt 1.2.3.1
Der genau Wert von ist .
Schritt 1.2.4
Die Kotangens-Funktion ist im ersten und dritten Quadranten positiv. Um die zweite Lösung zu ermitteln, addiere den Referenzwinkel aus , um die Lösung im vierten Quadranten zu bestimmen.
Schritt 1.2.5
Vereinfache .
Schritt 1.2.5.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.5.2
Kombiniere Brüche.
Schritt 1.2.5.2.1
Kombiniere und .
Schritt 1.2.5.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.5.3
Vereinfache den Zähler.
Schritt 1.2.5.3.1
Bringe auf die linke Seite von .
Schritt 1.2.5.3.2
Addiere und .
Schritt 1.2.6
Ermittele die Periode von .
Schritt 1.2.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 1.2.6.2
Ersetze durch in der Formel für die Periode.
Schritt 1.2.6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 1.2.6.4
Dividiere durch .
Schritt 1.2.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
Schritt 1.2.8
Fasse die Ergebnisse zusammen.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 1.3
Schnittpunkt(e) mit der x-Achse in Punkt-Form.
Schnittpunkt(e) mit der x-Achse: , für jede Ganzzahl
Schnittpunkt(e) mit der x-Achse: , für jede Ganzzahl
Schritt 2
Schritt 2.1
Um den/die Schnittpunkt(e) mit der y-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 2.2
Löse die Gleichung.
Schritt 2.2.1
Entferne die Klammern.
Schritt 2.2.2
Vereinfache die rechte Seite.
Schritt 2.2.2.1
Vereinfache .
Schritt 2.2.2.1.1
Schreibe mithilfe von Sinus und Kosinus um.
Schritt 2.2.2.1.2
Der genau Wert von ist .
Schritt 2.2.2.2
Die Gleichung kann nicht gelöst werden, da sie nicht definiert ist.
Schritt 2.3
Um den/die Schnittpunkt(e) mit der y-Achse zu bestimmen, setze für ein und löse nach auf.
Schnittpunkt(e) mit der y-Achse:
Schnittpunkt(e) mit der y-Achse:
Schritt 3
Führe die Schnittpunkte auf.
Schnittpunkt(e) mit der x-Achse: , für jede Ganzzahl
Schnittpunkt(e) mit der y-Achse:
Schritt 4