Elementarmathematik Beispiele

Ermittle die Umkehrfunktion f(x)=(4^x)/(1+4^x)
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Multipliziere beide Seiten mit .
Schritt 3.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.1.2
Forme den Ausdruck um.
Schritt 3.3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.1
Wende das Distributivgesetz an.
Schritt 3.3.2.1.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.2.1
Mutltipliziere mit .
Schritt 3.3.2.1.2.2
Stelle und um.
Schritt 3.4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Stelle die Faktoren in um.
Schritt 3.4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.4.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.1
Multipliziere mit .
Schritt 3.4.3.2
Faktorisiere aus heraus.
Schritt 3.4.3.3
Faktorisiere aus heraus.
Schritt 3.4.4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.1
Teile jeden Ausdruck in durch .
Schritt 3.4.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.4.2.1.2
Dividiere durch .
Schritt 3.4.5
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 3.4.6
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 3.4.7
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.7.1
Teile jeden Ausdruck in durch .
Schritt 3.4.7.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.7.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.7.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.7.2.1.2
Dividiere durch .
Schritt 4
Replace with to show the final answer.
Schritt 5
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 5.2.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.3.3
Schreibe in eine faktorisierte Form um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.3.1
Subtrahiere von .
Schritt 5.2.3.3.2
Addiere und .
Schritt 5.2.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5.2.4.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.4.2.2
Forme den Ausdruck um.
Schritt 5.2.5
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 5.2.6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.6.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.6.2
Dividiere durch .
Schritt 5.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1
Nutze die Änderung der Basis-Regel .
Schritt 5.3.3.2
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 5.3.4
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.1
Nutze die Änderung der Basis-Regel .
Schritt 5.3.4.2
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 5.3.4.3
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 5.3.4.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.3.4.5
Schreibe in eine faktorisierte Form um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.5.1
Addiere und .
Schritt 5.3.4.5.2
Addiere und .
Schritt 5.3.5
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5.3.6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.6.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.6.2
Forme den Ausdruck um.
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .