Elementarmathematik Beispiele

Bestimme die durchschnittliche Änderungsrate f(x)=cos(x) , [pi,3pi]
,
Schritt 1
Schreibe als Gleichung.
Schritt 2
Substituiere unter Verwendung der Formel für die durchschnittliche Änderungsrate.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Die durchschnittliche Änderungsrate einer Funktion kann ermittelt werden durch Berechnen des Quotienten aus der Änderung der -Werte der beiden Punkte und der Änderung der -Werte der beiden Punkte.
Schritt 2.2
Setze die Gleichung für und ein, wobei durch den entsprechenden -Wert ersetzt wird.
Schritt 3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Subtrahiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 3.1.2
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 3.1.3
Der genau Wert von ist .
Schritt 3.1.4
Mutltipliziere mit .
Schritt 3.1.5
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 3.1.6
Der genau Wert von ist .
Schritt 3.1.7
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.7.1
Mutltipliziere mit .
Schritt 3.1.7.2
Mutltipliziere mit .
Schritt 3.1.8
Addiere und .
Schritt 3.2
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Subtrahiere von .
Schritt 3.2.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Faktorisiere aus heraus.
Schritt 3.2.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.2.1
Faktorisiere aus heraus.
Schritt 3.2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.2.3
Forme den Ausdruck um.
Schritt 3.2.3
Dividiere durch .