Elementarmathematik Beispiele

Bestimme den Definitionsbereich Logarithmische Basis 5 von 5^(x+1)-20=x
Schritt 1
Setze das Argument in größer als , um zu ermitteln. wo der Ausdruck definiert ist.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Addiere auf beiden Seiten der Ungleichung.
Schritt 2.2
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 2.3
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 2.4
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1.1
Wende das Distributivgesetz an.
Schritt 2.4.1.2
Mutltipliziere mit .
Schritt 2.5
Bringe alle Terme, die einen Logarithmus enthalten, auf die linke Seite der Gleichung.
Schritt 2.6
Nutze die Quotienteneigenschaft von Logarithmen, .
Schritt 2.7
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.1
Faktorisiere aus heraus.
Schritt 2.7.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.2.1
Faktorisiere aus heraus.
Schritt 2.7.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.7.2.3
Forme den Ausdruck um.
Schritt 2.8
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.9
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.9.1
Teile jeden Ausdruck in durch .
Schritt 2.9.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.9.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.9.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.9.2.1.2
Dividiere durch .
Schritt 2.9.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.9.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.10
Die Lösung besteht aus allen wahren Intervallen.
Schritt 3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 4