Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Ermittle, wo der Ausdruck nicht definiert ist.
Schritt 2
Die vertikalen Asymptoten treten in Bereichen einer unendlichen Unstetigkeit auf.
Keine vertikalen Asymptoten
Schritt 3
Betrachte die rationale Funktion , wobei der Grad des Zählers und der Grad des Nenners ist.
1. Wenn , dann ist die x-Achse, , die horizontale Asymptote.
2. Wenn , dann ist die horizontale Asymptote die Gerade .
3. Wenn , dann gibt es keine horizontale Asymptote (es gibt eine schiefe Asymptote).
Schritt 4
Ermittle und .
Schritt 5
Da , gibt es keine horizontale Asymptote.
Keine horizontalen Asymptoten
Schritt 6
Schritt 6.1
Vereinfache den Ausdruck.
Schritt 6.1.1
Vereinfache den Zähler.
Schritt 6.1.1.1
Schreibe als um.
Schritt 6.1.1.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 6.1.2
Vereinfache Terme.
Schritt 6.1.2.1
Kürze den gemeinsamen Teiler von und .
Schritt 6.1.2.1.1
Faktorisiere aus heraus.
Schritt 6.1.2.1.2
Schreibe als um.
Schritt 6.1.2.1.3
Faktorisiere aus heraus.
Schritt 6.1.2.1.4
Kürze den gemeinsamen Faktor.
Schritt 6.1.2.1.5
Dividiere durch .
Schritt 6.1.2.2
Schreibe als um.
Schritt 6.1.2.3
Wende das Distributivgesetz an.
Schritt 6.1.2.4
Mutltipliziere mit .
Schritt 6.2
Die schiefe Asymptote ist der Polynomteil des Ergebnisses der schriftlichen Division.
Schritt 7
Das ist die Menge aller Asymptoten.
Keine vertikalen Asymptoten
Keine horizontalen Asymptoten
Schiefe Asymptoten:
Schritt 8