Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Ermittle, wo der Ausdruck nicht definiert ist.
Schritt 2
Die vertikalen Asymptoten treten in Bereichen einer unendlichen Unstetigkeit auf.
Keine vertikalen Asymptoten
Schritt 3
Betrachte die rationale Funktion , wobei der Grad des Zählers und der Grad des Nenners ist.
1. Wenn , dann ist die x-Achse, , die horizontale Asymptote.
2. Wenn , dann ist die horizontale Asymptote die Gerade .
3. Wenn , dann gibt es keine horizontale Asymptote (es gibt eine schiefe Asymptote).
Schritt 4
Ermittle und .
Schritt 5
Da , gibt es keine horizontale Asymptote.
Keine horizontalen Asymptoten
Schritt 6
Schritt 6.1
Vereinfache den Ausdruck.
Schritt 6.1.1
Vereinfache den Zähler.
Schritt 6.1.1.1
Faktorisiere aus heraus.
Schritt 6.1.1.1.1
Faktorisiere aus heraus.
Schritt 6.1.1.1.2
Faktorisiere aus heraus.
Schritt 6.1.1.1.3
Faktorisiere aus heraus.
Schritt 6.1.1.1.4
Faktorisiere aus heraus.
Schritt 6.1.1.1.5
Faktorisiere aus heraus.
Schritt 6.1.1.2
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 6.1.1.2.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 6.1.1.2.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 6.1.2
Vereinfache Terme.
Schritt 6.1.2.1
Kürze den gemeinsamen Faktor von .
Schritt 6.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.1.2.1.2
Dividiere durch .
Schritt 6.1.2.2
Wende das Distributivgesetz an.
Schritt 6.1.2.3
Vereinfache den Ausdruck.
Schritt 6.1.2.3.1
Mutltipliziere mit .
Schritt 6.1.2.3.2
Mutltipliziere mit .
Schritt 6.2
Die schiefe Asymptote ist der Polynomteil des Ergebnisses der schriftlichen Division.
Schritt 7
Das ist die Menge aller Asymptoten.
Keine vertikalen Asymptoten
Keine horizontalen Asymptoten
Schiefe Asymptoten:
Schritt 8