ما قبل التفاضل والتكامل الأمثلة

أوجد الخطوط المقاربة (x^3+1)/(3x+6)
خطوة 1
أوجِد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 2
ضع في اعتبارك الدالة الكسرية حيث هي درجة البسط و هي درجة القاسم.
1. إذا كانت ، فإن المحور السيني، ، هو خط التقارب الأفقي.
2. في حالة ، فإن خط التقارب الأفقي هو الخط .
3. في حالة ، لا يوجد خط تقارب أفقي (يوجد خط تقارب مائل).
خطوة 3
أوجِد و.
خطوة 4
بما أن ، إذن لا يوجد خط تقارب أفقي.
لا توجد خطوط تقارب أفقية
خطوة 5
أوجِد خط التقارب المائل باستخدام قسمة متعددات الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1.1
أعِد كتابة بالصيغة .
خطوة 5.1.1.2
بما أن كلا الحدّين هما مكعبان كاملان، حلّل إلى عوامل باستخدام قاعدة مجموع مكعبين، حيث و.
خطوة 5.1.1.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1.3.1
اضرب في .
خطوة 5.1.1.3.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 5.1.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 5.1.2.1
أخرِج العامل من .
خطوة 5.1.2.2
أخرِج العامل من .
خطوة 5.1.2.3
أخرِج العامل من .
خطوة 5.2
وسّع .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
طبّق خاصية التوزيع.
خطوة 5.2.2
طبّق خاصية التوزيع.
خطوة 5.2.3
طبّق خاصية التوزيع.
خطوة 5.2.4
طبّق خاصية التوزيع.
خطوة 5.2.5
طبّق خاصية التوزيع.
خطوة 5.2.6
احذِف الأقواس.
خطوة 5.2.7
أعِد ترتيب و.
خطوة 5.2.8
أعِد ترتيب و.
خطوة 5.2.9
احذِف الأقواس.
خطوة 5.2.10
اضرب في .
خطوة 5.2.11
ارفع إلى القوة .
خطوة 5.2.12
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 5.2.13
أضف و.
خطوة 5.2.14
أخرِج السالب.
خطوة 5.2.15
ارفع إلى القوة .
خطوة 5.2.16
ارفع إلى القوة .
خطوة 5.2.17
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 5.2.18
أضف و.
خطوة 5.2.19
اضرب في .
خطوة 5.2.20
اضرب في .
خطوة 5.2.21
اضرب في .
خطوة 5.2.22
اضرب في .
خطوة 5.2.23
انقُل .
خطوة 5.2.24
انقُل .
خطوة 5.2.25
اطرح من .
خطوة 5.2.26
أضف و.
خطوة 5.2.27
اطرح من .
خطوة 5.2.28
أضف و.
خطوة 5.3
وسّع .
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
طبّق خاصية التوزيع.
خطوة 5.3.2
اضرب في .
خطوة 5.4
عيّن متعددات الحدود التي ستتم قسمتها. وفي حالة عدم وجود حد لكل أُس، أدخل حدًا واحدًا بقيمة .
++++
خطوة 5.5
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
++++
خطوة 5.6
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
++++
++
خطوة 5.7
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
++++
--
خطوة 5.8
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
++++
--
-
خطوة 5.9
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
++++
--
-+
خطوة 5.10
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
-
++++
--
-+
خطوة 5.11
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
-
++++
--
-+
--
خطوة 5.12
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
-
++++
--
-+
++
خطوة 5.13
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
-
++++
--
-+
++
+
خطوة 5.14
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
-
++++
--
-+
++
++
خطوة 5.15
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
-+
++++
--
-+
++
++
خطوة 5.16
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
-+
++++
--
-+
++
++
++
خطوة 5.17
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
-+
++++
--
-+
++
++
--
خطوة 5.18
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
-+
++++
--
-+
++
++
--
-
خطوة 5.19
الإجابة النهائية هي ناتج القسمة زائد الباقي على المقسوم عليه.
خطوة 5.20
خط التقارب المائل هو جزء متعدد الحدود من ناتج القسمة المطولة.
خطوة 6
هذه هي مجموعة جميع خطوط التقارب.
خطوط التقارب الرأسية:
لا توجد خطوط تقارب أفقية
خطوط التقارب المائلة:
خطوة 7