إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
حلّل الكسر إلى عوامل.
خطوة 1.1.1
أعِد كتابة بالصيغة .
خطوة 1.1.2
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 1.2
أنشئ كسرًا جديدًا لكل عامل في القاسم باستخدام العامل كقاسم، وقيمة غير معروفة كبسط الكسر. ونظرًا إلى أن العامل في القاسم خطي، ضع متغيرًا واحدًا في مكانه .
خطوة 1.3
أنشئ كسرًا جديدًا لكل عامل في القاسم باستخدام العامل كقاسم، وقيمة غير معروفة كبسط الكسر. ونظرًا إلى أن العامل في القاسم خطي، ضع متغيرًا واحدًا في مكانه .
خطوة 1.4
اضرب كل كسر في المعادلة في قاسم العبارة الأصلية. في هذه الحالة، القاسم يساوي .
خطوة 1.5
ألغِ العامل المشترك لـ .
خطوة 1.5.1
ألغِ العامل المشترك.
خطوة 1.5.2
أعِد كتابة العبارة.
خطوة 1.6
ألغِ العامل المشترك لـ .
خطوة 1.6.1
ألغِ العامل المشترك.
خطوة 1.6.2
اقسِم على .
خطوة 1.7
بسّط كل حد.
خطوة 1.7.1
ألغِ العامل المشترك لـ .
خطوة 1.7.1.1
ألغِ العامل المشترك.
خطوة 1.7.1.2
اقسِم على .
خطوة 1.7.2
طبّق خاصية التوزيع.
خطوة 1.7.3
انقُل إلى يسار .
خطوة 1.7.4
ألغِ العامل المشترك لـ .
خطوة 1.7.4.1
ألغِ العامل المشترك.
خطوة 1.7.4.2
اقسِم على .
خطوة 1.7.5
طبّق خاصية التوزيع.
خطوة 1.7.6
انقُل إلى يسار .
خطوة 1.8
انقُل .
خطوة 2
خطوة 2.1
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات من كل متعادل. ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 2.2
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات الحدود التي لا تتضمن . ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 2.3
عيّن سلسلة المعادلات لإيجاد معاملات الكسور الجزئية.
خطوة 3
خطوة 3.1
أوجِد قيمة في .
خطوة 3.1.1
أعِد كتابة المعادلة في صورة .
خطوة 3.1.2
اطرح من كلا المتعادلين.
خطوة 3.2
استبدِل كافة حالات حدوث بـ في كل معادلة.
خطوة 3.2.1
استبدِل كافة حالات حدوث في بـ .
خطوة 3.2.2
بسّط الطرف الأيمن.
خطوة 3.2.2.1
بسّط .
خطوة 3.2.2.1.1
بسّط كل حد.
خطوة 3.2.2.1.1.1
طبّق خاصية التوزيع.
خطوة 3.2.2.1.1.2
اضرب في .
خطوة 3.2.2.1.1.3
اضرب في .
خطوة 3.2.2.1.2
أضف و.
خطوة 3.3
أوجِد قيمة في .
خطوة 3.3.1
أعِد كتابة المعادلة في صورة .
خطوة 3.3.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 3.3.2.1
أضف إلى كلا المتعادلين.
خطوة 3.3.2.2
أضف و.
خطوة 3.3.3
اقسِم كل حد في على وبسّط.
خطوة 3.3.3.1
اقسِم كل حد في على .
خطوة 3.3.3.2
بسّط الطرف الأيسر.
خطوة 3.3.3.2.1
ألغِ العامل المشترك لـ .
خطوة 3.3.3.2.1.1
ألغِ العامل المشترك.
خطوة 3.3.3.2.1.2
اقسِم على .
خطوة 3.4
استبدِل كافة حالات حدوث بـ في كل معادلة.
خطوة 3.4.1
استبدِل كافة حالات حدوث في بـ .
خطوة 3.4.2
بسّط الطرف الأيمن.
خطوة 3.4.2.1
بسّط .
خطوة 3.4.2.1.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 3.4.2.1.2
اجمع و.
خطوة 3.4.2.1.3
اجمع البسوط على القاسم المشترك.
خطوة 3.4.2.1.4
بسّط بَسْط الكسر.
خطوة 3.4.2.1.4.1
اضرب في .
خطوة 3.4.2.1.4.2
اطرح من .
خطوة 3.5
اسرِد جميع الحلول.
خطوة 4
استبدِل كل معامل من معاملات الكسور الجزئية في بالقيم التي تم إيجادها لـ و.