إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اعزِل إلى المتعادل الأيسر.
خطوة 1.1.1
أعِد كتابة المعادلة في صورة .
خطوة 1.1.2
اقسِم كل حد في على وبسّط.
خطوة 1.1.2.1
اقسِم كل حد في على .
خطوة 1.1.2.2
بسّط الطرف الأيسر.
خطوة 1.1.2.2.1
ألغِ العامل المشترك لـ .
خطوة 1.1.2.2.1.1
ألغِ العامل المشترك.
خطوة 1.1.2.2.1.2
اقسِم على .
خطوة 1.1.3
اطرح من كلا المتعادلين.
خطوة 1.1.4
أعِد ترتيب الحدود.
خطوة 1.2
أكمل المربع لـ .
خطوة 1.2.1
بسّط العبارة.
خطوة 1.2.1.1
بسّط كل حد.
خطوة 1.2.1.1.1
أعِد كتابة بالصيغة .
خطوة 1.2.1.1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 1.2.1.1.2.1
طبّق خاصية التوزيع.
خطوة 1.2.1.1.2.2
طبّق خاصية التوزيع.
خطوة 1.2.1.1.2.3
طبّق خاصية التوزيع.
خطوة 1.2.1.1.3
بسّط ووحّد الحدود المتشابهة.
خطوة 1.2.1.1.3.1
بسّط كل حد.
خطوة 1.2.1.1.3.1.1
اضرب في .
خطوة 1.2.1.1.3.1.2
انقُل إلى يسار .
خطوة 1.2.1.1.3.1.3
اضرب في .
خطوة 1.2.1.1.3.2
أضف و.
خطوة 1.2.1.1.4
طبّق خاصية التوزيع.
خطوة 1.2.1.1.5
بسّط.
خطوة 1.2.1.1.5.1
اجمع و.
خطوة 1.2.1.1.5.2
ألغِ العامل المشترك لـ .
خطوة 1.2.1.1.5.2.1
أخرِج العامل من .
خطوة 1.2.1.1.5.2.2
أخرِج العامل من .
خطوة 1.2.1.1.5.2.3
ألغِ العامل المشترك.
خطوة 1.2.1.1.5.2.4
أعِد كتابة العبارة.
خطوة 1.2.1.1.5.3
اجمع و.
خطوة 1.2.1.1.5.4
اجمع و.
خطوة 1.2.1.1.5.5
اجمع و.
خطوة 1.2.1.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.2.1.3
اجمع و.
خطوة 1.2.1.4
اجمع البسوط على القاسم المشترك.
خطوة 1.2.1.5
بسّط بَسْط الكسر.
خطوة 1.2.1.5.1
اضرب في .
خطوة 1.2.1.5.2
اطرح من .
خطوة 1.2.2
استخدِم الصيغة لإيجاد قيم و و.
خطوة 1.2.3
ضع في اعتبارك شكل رأس قطع مكافئ.
خطوة 1.2.4
أوجِد قيمة باستخدام القاعدة .
خطوة 1.2.4.1
عوّض بقيمتَي و في القاعدة .
خطوة 1.2.4.2
بسّط الطرف الأيمن.
خطوة 1.2.4.2.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 1.2.4.2.2
اجمع و.
خطوة 1.2.4.2.3
احذِف العامل المشترك لـ و.
خطوة 1.2.4.2.3.1
أخرِج العامل من .
خطوة 1.2.4.2.3.2
ألغِ العوامل المشتركة.
خطوة 1.2.4.2.3.2.1
أخرِج العامل من .
خطوة 1.2.4.2.3.2.2
ألغِ العامل المشترك.
خطوة 1.2.4.2.3.2.3
أعِد كتابة العبارة.
خطوة 1.2.4.2.4
اضرب بسط الكسر في مقلوب القاسم.
خطوة 1.2.4.2.5
ألغِ العامل المشترك لـ .
خطوة 1.2.4.2.5.1
أخرِج العامل من .
خطوة 1.2.4.2.5.2
ألغِ العامل المشترك.
خطوة 1.2.4.2.5.3
أعِد كتابة العبارة.
خطوة 1.2.5
أوجِد قيمة باستخدام القاعدة .
خطوة 1.2.5.1
عوّض بقيم و و في القاعدة .
خطوة 1.2.5.2
بسّط الطرف الأيمن.
خطوة 1.2.5.2.1
بسّط كل حد.
خطوة 1.2.5.2.1.1
بسّط بَسْط الكسر.
خطوة 1.2.5.2.1.1.1
طبّق قاعدة الضرب على .
خطوة 1.2.5.2.1.1.2
ارفع إلى القوة .
خطوة 1.2.5.2.1.1.3
ارفع إلى القوة .
خطوة 1.2.5.2.1.2
اجمع و.
خطوة 1.2.5.2.1.3
احذِف العامل المشترك لـ و.
خطوة 1.2.5.2.1.3.1
أخرِج العامل من .
خطوة 1.2.5.2.1.3.2
ألغِ العوامل المشتركة.
خطوة 1.2.5.2.1.3.2.1
أخرِج العامل من .
خطوة 1.2.5.2.1.3.2.2
ألغِ العامل المشترك.
خطوة 1.2.5.2.1.3.2.3
أعِد كتابة العبارة.
خطوة 1.2.5.2.1.4
اضرب بسط الكسر في مقلوب القاسم.
خطوة 1.2.5.2.1.5
ألغِ العامل المشترك لـ .
خطوة 1.2.5.2.1.5.1
أخرِج العامل من .
خطوة 1.2.5.2.1.5.2
ألغِ العامل المشترك.
خطوة 1.2.5.2.1.5.3
أعِد كتابة العبارة.
خطوة 1.2.5.2.2
اجمع البسوط على القاسم المشترك.
خطوة 1.2.5.2.3
اطرح من .
خطوة 1.2.5.2.4
اقسِم على .
خطوة 1.2.6
عوّض بقيم و و في شكل الرأس .
خطوة 1.3
عيّن قيمة لتصبح مساوية للطرف الأيمن الجديد.
خطوة 2
استخدِم صيغة الرأس، ، لتحديد قيم و و.
خطوة 3
بما أن قيمة موجبة، إذن القطع المكافئ مفتوح إلى أعلى.
مفتوح إلى أعلى
خطوة 4
أوجِد الرأس .
خطوة 5
خطوة 5.1
أوجِد المسافة من الرأس إلى بؤرة القطع المكافئ باستخدام القاعدة التالية.
خطوة 5.2
عوّض بقيمة في القاعدة.
خطوة 5.3
بسّط.
خطوة 5.3.1
اجمع و.
خطوة 5.3.2
احذِف العامل المشترك لـ و.
خطوة 5.3.2.1
أخرِج العامل من .
خطوة 5.3.2.2
ألغِ العوامل المشتركة.
خطوة 5.3.2.2.1
أخرِج العامل من .
خطوة 5.3.2.2.2
ألغِ العامل المشترك.
خطوة 5.3.2.2.3
أعِد كتابة العبارة.
خطوة 5.3.3
اضرب بسط الكسر في مقلوب القاسم.
خطوة 5.3.4
اضرب في .
خطوة 6
خطوة 6.1
يمكن إيجاد بؤرة القطع المكافئ بجمع مع الإحداثي الصادي إذا كان القطع المكافئ مفتوحًا إلى أعلى أو إلى أسفل.
خطوة 6.2
عوّض بقيم و و المعروفة في القاعدة وبسّط.
خطوة 7
أوجِد محور التناظر بإيجاد الخط الذي يمر عبر الرأس والبؤرة.
خطوة 8
خطوة 8.1
دليل القطع المكافئ هو الخط الأفقي الذي يمكن إيجاده بطرح من الإحداثي الصادي للرأس إذا كان القطع المكافئ مفتوح إلى أعلى أو إلى أسفل.
خطوة 8.2
عوّض بقيمتَي و المعروفتين في القاعدة وبسّط.
خطوة 9
استخدِم خصائص القطع المكافئ لتحليل القطع المكافئ وتمثيله بيانيًا.
الاتجاه: مفتوح للأعلى
الرأس:
البؤرة:
محور التناظر:
الدليل:
خطوة 10