ما قبل التفاضل والتكامل الأمثلة

أوجد الجذور باستخدام اختبار نظرية الجذور x^4-x^3+2x^2-4x-8=0
خطوة 1
إذا كانت دالة متعددة الحدود لها معاملات عدد صحيح، فإن كل صفر نسبي سيكون بالصيغة والتي تكون فيها هي عامل الثابت و هي عامل المعامل الرئيسي.
خطوة 2
أوجِد كل تركيبة من تركيبات . هذه هي الجذور المحتملة للدالة متعددة الحدود.
خطوة 3
عوّض بالجذور الممكنة واحدًا تلو الآخر في متعدد الحدود لإيجاد الجذور الفعلية. وبسّط للتحقق مما إذا كانت القيمة تساوي ، وهو ما يعني أنها تمثل جذرًا.
خطوة 4
بسّط العبارة. في هذه الحالة، العبارة تساوي ، إذن هي جذر متعدد الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
ارفع إلى القوة .
خطوة 4.1.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1.1
ارفع إلى القوة .
خطوة 4.1.2.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.1.2.2
أضف و.
خطوة 4.1.3
ارفع إلى القوة .
خطوة 4.1.4
ارفع إلى القوة .
خطوة 4.1.5
اضرب في .
خطوة 4.1.6
اضرب في .
خطوة 4.2
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
أضف و.
خطوة 4.2.2
أضف و.
خطوة 4.2.3
أضف و.
خطوة 4.2.4
اطرح من .
خطوة 5
بما أن جذر معروف، اقسم متعدد الحدود على لإيجاد ناتج قسمة متعدد الحدود. ويمكن بعد ذلك استخدام متعدد الحدود لإيجاد الجذور المتبقية.
خطوة 6
بعد ذلك، أوجِد جذور متعدد الحدود المتبقي. انخفض ترتيب متعدد الحدود بمقدار .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
ضَع الأعداد التي تمثل المقسوم عليه والمقسوم في شكل يشبه القسمة.
  
خطوة 6.2
يُوضع العدد الأول في المقسوم في الموضع الأول من المساحة الناتجة (أسفل الخط الأفقي).
  
خطوة 6.3
اضرب المُدخل الأحدث في النتيجة في المقسوم عليه وضَع نتيجة أسفل الحد التالي في المقسوم .
  
خطوة 6.4
أضف حاصل الضرب والعدد من المقسوم وضع النتيجة في الموضع التالي على خط النتيجة.
  
خطوة 6.5
اضرب المُدخل الأحدث في النتيجة في المقسوم عليه وضَع نتيجة أسفل الحد التالي في المقسوم .
  
خطوة 6.6
أضف حاصل الضرب والعدد من المقسوم وضع النتيجة في الموضع التالي على خط النتيجة.
  
خطوة 6.7
اضرب المُدخل الأحدث في النتيجة في المقسوم عليه وضَع نتيجة أسفل الحد التالي في المقسوم .
  
خطوة 6.8
أضف حاصل الضرب والعدد من المقسوم وضع النتيجة في الموضع التالي على خط النتيجة.
  
خطوة 6.9
اضرب المُدخل الأحدث في النتيجة في المقسوم عليه وضَع نتيجة أسفل الحد التالي في المقسوم .
 
خطوة 6.10
أضف حاصل الضرب والعدد من المقسوم وضع النتيجة في الموضع التالي على خط النتيجة.
 
خطوة 6.11
تصبح جميع الأعداد ماعدا العدد الأخير معاملات خارج القسمة في متعدد الحدود. وتكون القيمة الأخيرة في خط النتيجة هي الباقي.
خطوة 6.12
بسّط ناتج قسمة متعدد الحدود.
خطوة 7
أخرِج العامل المشترك الأكبر من كل مجموعة.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
جمّع أول حدين وآخر حدين.
خطوة 7.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 8
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 9
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
أعِد تجميع الحدود.
خطوة 9.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 9.2.1
أخرِج العامل من .
خطوة 9.2.2
أخرِج العامل من .
خطوة 9.2.3
أخرِج العامل من .
خطوة 9.3
حلّل إلى عوامل باستخدام اختبار الجذور النسبية.
انقر لعرض المزيد من الخطوات...
خطوة 9.3.1
إذا كانت دالة متعددة الحدود لها معاملات عدد صحيح، فإن كل صفر نسبي سيكون بالصيغة والتي تكون فيها هي عامل الثابت و هي عامل المعامل الرئيسي.
خطوة 9.3.2
أوجِد كل تركيبة من تركيبات . هذه هي الجذور المحتملة للدالة متعددة الحدود.
خطوة 9.3.3
عوّض بـ وبسّط العبارة. في هذه الحالة، العبارة تساوي ، إذن هو جذر متعدد الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 9.3.3.1
عوّض بـ في متعدد الحدود.
خطوة 9.3.3.2
ارفع إلى القوة .
خطوة 9.3.3.3
اضرب في .
خطوة 9.3.3.4
اطرح من .
خطوة 9.3.3.5
اطرح من .
خطوة 9.3.4
بما أن جذر معروف، اقسِم متعدد الحدود على لإيجاد ناتج قسمة متعدد الحدود. ويمكن بعد ذلك استخدام متعدد الحدود لإيجاد الجذور المتبقية.
خطوة 9.3.5
اقسِم على .
انقر لعرض المزيد من الخطوات...
خطوة 9.3.5.1
عيّن متعددات الحدود التي ستتم قسمتها. وفي حالة عدم وجود حد لكل أُس، أدخل حدًا واحدًا بقيمة .
-++--
خطوة 9.3.5.2
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
-++--
خطوة 9.3.5.3
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
-++--
+-
خطوة 9.3.5.4
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
-++--
-+
خطوة 9.3.5.5
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
-++--
-+
+
خطوة 9.3.5.6
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
-++--
-+
++
خطوة 9.3.5.7
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
+
-++--
-+
++
خطوة 9.3.5.8
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
+
-++--
-+
++
+-
خطوة 9.3.5.9
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
+
-++--
-+
++
-+
خطوة 9.3.5.10
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
+
-++--
-+
++
-+
+
خطوة 9.3.5.11
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
+
-++--
-+
++
-+
+-
خطوة 9.3.5.12
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
++
-++--
-+
++
-+
+-
خطوة 9.3.5.13
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
++
-++--
-+
++
-+
+-
+-
خطوة 9.3.5.14
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
++
-++--
-+
++
-+
+-
-+
خطوة 9.3.5.15
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
++
-++--
-+
++
-+
+-
-+
+
خطوة 9.3.5.16
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
++
-++--
-+
++
-+
+-
-+
+-
خطوة 9.3.5.17
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
+++
-++--
-+
++
-+
+-
-+
+-
خطوة 9.3.5.18
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
+++
-++--
-+
++
-+
+-
-+
+-
+-
خطوة 9.3.5.19
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
+++
-++--
-+
++
-+
+-
-+
+-
-+
خطوة 9.3.5.20
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
+++
-++--
-+
++
-+
+-
-+
+-
-+
خطوة 9.3.5.21
بما أن الباقي يساوي ، إذن الإجابة النهائية هي ناتج القسمة.
خطوة 9.3.6
اكتب في صورة مجموعة من العوامل.
خطوة 9.4
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 9.4.1
أخرِج العامل من .
خطوة 9.4.2
أخرِج العامل من .
خطوة 9.5
أضف و.
خطوة 9.6
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 9.6.1
أعِد كتابة بصيغة محلّلة إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 9.6.1.1
أخرِج العامل المشترك الأكبر من كل مجموعة.
انقر لعرض المزيد من الخطوات...
خطوة 9.6.1.1.1
جمّع أول حدين وآخر حدين.
خطوة 9.6.1.1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 9.6.1.2
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 9.6.2
احذِف الأقواس غير الضرورية.
خطوة 10
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 11
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 11.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 11.2
أضف إلى كلا المتعادلين.
خطوة 12
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 12.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 12.2
اطرح من كلا المتعادلين.
خطوة 13
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 13.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 13.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 13.2.1
اطرح من كلا المتعادلين.
خطوة 13.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 13.2.3
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 13.2.3.1
أعِد كتابة بالصيغة .
خطوة 13.2.3.2
أعِد كتابة بالصيغة .
خطوة 13.2.3.3
أعِد كتابة بالصيغة .
خطوة 13.2.3.4
أعِد كتابة بالصيغة .
خطوة 13.2.3.5
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 13.2.3.6
انقُل إلى يسار .
خطوة 13.2.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 13.2.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 13.2.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 13.2.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 14
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 15