ما قبل التفاضل والتكامل الأمثلة

خطوة 1
أوجِد الصيغة القياسية للقطع الناقص.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
اطرح من كلا المتعادلين.
خطوة 1.2
أكمل المربع لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
استخدِم الصيغة لإيجاد قيم و و.
خطوة 1.2.2
ضع في اعتبارك شكل رأس قطع مكافئ.
خطوة 1.2.3
أوجِد قيمة باستخدام القاعدة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
عوّض بقيمتَي و في القاعدة .
خطوة 1.2.3.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.1
ألغِ العامل المشترك.
خطوة 1.2.3.2.2
أعِد كتابة العبارة.
خطوة 1.2.4
أوجِد قيمة باستخدام القاعدة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1
عوّض بقيم و و في القاعدة .
خطوة 1.2.4.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.1.1
ارفع إلى القوة .
خطوة 1.2.4.2.1.2
اضرب في .
خطوة 1.2.4.2.1.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.1.3.1
ألغِ العامل المشترك.
خطوة 1.2.4.2.1.3.2
أعِد كتابة العبارة.
خطوة 1.2.4.2.1.4
اضرب في .
خطوة 1.2.4.2.2
اطرح من .
خطوة 1.2.5
عوّض بقيم و و في شكل الرأس .
خطوة 1.3
استبدِل بـ في المعادلة .
خطوة 1.4
انقُل إلى المتعادل الأيمن بإضافة إلى كلا الطرفين.
خطوة 1.5
أكمل المربع لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
استخدِم الصيغة لإيجاد قيم و و.
خطوة 1.5.2
ضع في اعتبارك شكل رأس قطع مكافئ.
خطوة 1.5.3
أوجِد قيمة باستخدام القاعدة .
انقر لعرض المزيد من الخطوات...
خطوة 1.5.3.1
عوّض بقيمتَي و في القاعدة .
خطوة 1.5.3.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.3.2.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.3.2.1.1
أخرِج العامل من .
خطوة 1.5.3.2.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.3.2.1.2.1
أخرِج العامل من .
خطوة 1.5.3.2.1.2.2
ألغِ العامل المشترك.
خطوة 1.5.3.2.1.2.3
أعِد كتابة العبارة.
خطوة 1.5.3.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.5.3.2.2.1
ألغِ العامل المشترك.
خطوة 1.5.3.2.2.2
أعِد كتابة العبارة.
خطوة 1.5.4
أوجِد قيمة باستخدام القاعدة .
انقر لعرض المزيد من الخطوات...
خطوة 1.5.4.1
عوّض بقيم و و في القاعدة .
خطوة 1.5.4.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.4.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.4.2.1.1
ارفع إلى القوة .
خطوة 1.5.4.2.1.2
اضرب في .
خطوة 1.5.4.2.1.3
اقسِم على .
خطوة 1.5.4.2.1.4
اضرب في .
خطوة 1.5.4.2.2
اطرح من .
خطوة 1.5.5
عوّض بقيم و و في شكل الرأس .
خطوة 1.6
استبدِل بـ في المعادلة .
خطوة 1.7
انقُل إلى المتعادل الأيمن بإضافة إلى كلا الطرفين.
خطوة 1.8
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 1.8.1
أضف و.
خطوة 1.8.2
أضف و.
خطوة 1.9
اقسِم كل حد على ليصبح الطرف الأيمن مساويًا لواحد.
خطوة 1.10
بسّط كل حد في المعادلة لتعيين قيمة الطرف الأيمن بحيث تصبح مساوية لـ . تتطلب الصيغة القياسية للقطع الناقص أو القطع الزائد أن يكون المتعادل الأيمن .
خطوة 2
هذه الصيغة هي صيغة القطع الناقص. استخدِم هذه الصيغة لتحديد القيم المستخدمة لإيجاد المركز بالإضافة إلى المحور الرئيسي والثانوي للقطع الناقص.
خطوة 3
طابِق القيم الموجودة في هذا القطع الناقص بقيم الصيغة القياسية. يمثل المتغير نصف قطر المحور الرئيسي للقطع الناقص، ويمثل نصف قطر المحور الثانوي للقطع الناقص، ويمثل الإزاحة الأفقية x عن نقطة الأصل، ويمثل الإزاحة الرأسية y عن نقطة الأصل.
خطوة 4
أوجِد الرؤوس.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
يمكن إيجاد الرأس الأول لقطع ناقص بجمع مع .
خطوة 4.2
عوّض بقيم و و المعروفة في القاعدة.
خطوة 4.3
بسّط.
خطوة 4.4
يمكن إيجاد الرأس الثانية لقطع ناقص بطرح من .
خطوة 4.5
عوّض بقيم و و المعروفة في القاعدة.
خطوة 4.6
بسّط.
خطوة 4.7
القطوع الناقصة لها رأسان.
:
:
:
:
خطوة 5