ما قبل التفاضل والتكامل الأمثلة

خطوة 1
اعزِل إلى المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أعِد كتابة المعادلة في صورة .
خطوة 1.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
اقسِم كل حد في على .
خطوة 1.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.2.1.2
اقسِم على .
خطوة 1.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
انقُل السالب أمام الكسر.
خطوة 1.3
أضف إلى كلا المتعادلين.
خطوة 1.4
أعِد ترتيب الحدود.
خطوة 2
استخدِم صيغة الرأس، ، لتحديد قيم و و.
خطوة 3
أوجِد الرأس .
خطوة 4
أوجِد ، المسافة من الرأس إلى البؤرة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أوجِد المسافة من الرأس إلى بؤرة القطع المكافئ باستخدام القاعدة التالية.
خطوة 4.2
عوّض بقيمة في القاعدة.
خطوة 4.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1.1
أعِد كتابة بالصيغة .
خطوة 4.3.1.2
انقُل السالب أمام الكسر.
خطوة 4.3.2
اجمع و.
خطوة 4.3.3
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.1
أخرِج العامل من .
خطوة 4.3.3.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.2.1
أخرِج العامل من .
خطوة 4.3.3.2.2
ألغِ العامل المشترك.
خطوة 4.3.3.2.3
أعِد كتابة العبارة.
خطوة 4.3.4
اضرب بسط الكسر في مقلوب القاسم.
خطوة 4.3.5
اضرب في .
خطوة 5
أوجِد الدليل.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
دليل القطع المكافئ هو الخط الرأسي الذي يمكن إيجاده بطرح من الإحداثي السيني للرأس إذا كان القطع المكافئ مفتوح على اليسار أو على اليمين.
خطوة 5.2
عوّض بقيمتَي و المعروفتين في القاعدة وبسّط.
خطوة 6