إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
أضف إلى كلا المتعادلين.
خطوة 2
خطوة 2.1
استخدِم الصيغة لإيجاد قيم و و.
خطوة 2.2
ضع في اعتبارك شكل رأس قطع مكافئ.
خطوة 2.3
أوجِد قيمة باستخدام القاعدة .
خطوة 2.3.1
عوّض بقيمتَي و في القاعدة .
خطوة 2.3.2
بسّط الطرف الأيمن.
خطوة 2.3.2.1
احذِف العامل المشترك لـ و.
خطوة 2.3.2.1.1
أخرِج العامل من .
خطوة 2.3.2.1.2
ألغِ العوامل المشتركة.
خطوة 2.3.2.1.2.1
أخرِج العامل من .
خطوة 2.3.2.1.2.2
ألغِ العامل المشترك.
خطوة 2.3.2.1.2.3
أعِد كتابة العبارة.
خطوة 2.3.2.2
احذِف العامل المشترك لـ و.
خطوة 2.3.2.2.1
أخرِج العامل من .
خطوة 2.3.2.2.2
ألغِ العوامل المشتركة.
خطوة 2.3.2.2.2.1
أخرِج العامل من .
خطوة 2.3.2.2.2.2
ألغِ العامل المشترك.
خطوة 2.3.2.2.2.3
أعِد كتابة العبارة.
خطوة 2.3.2.2.2.4
اقسِم على .
خطوة 2.4
أوجِد قيمة باستخدام القاعدة .
خطوة 2.4.1
عوّض بقيم و و في القاعدة .
خطوة 2.4.2
بسّط الطرف الأيمن.
خطوة 2.4.2.1
بسّط كل حد.
خطوة 2.4.2.1.1
ارفع إلى القوة .
خطوة 2.4.2.1.2
اضرب في .
خطوة 2.4.2.1.3
اقسِم على .
خطوة 2.4.2.1.4
اضرب في .
خطوة 2.4.2.2
اطرح من .
خطوة 2.5
عوّض بقيم و و في شكل الرأس .
خطوة 3
استبدِل بـ في المعادلة .
خطوة 4
انقُل إلى المتعادل الأيمن بإضافة إلى كلا الطرفين.
خطوة 5
خطوة 5.1
استخدِم الصيغة لإيجاد قيم و و.
خطوة 5.2
ضع في اعتبارك شكل رأس قطع مكافئ.
خطوة 5.3
أوجِد قيمة باستخدام القاعدة .
خطوة 5.3.1
عوّض بقيمتَي و في القاعدة .
خطوة 5.3.2
بسّط الطرف الأيمن.
خطوة 5.3.2.1
احذِف العامل المشترك لـ و.
خطوة 5.3.2.1.1
أخرِج العامل من .
خطوة 5.3.2.1.2
ألغِ العوامل المشتركة.
خطوة 5.3.2.1.2.1
أخرِج العامل من .
خطوة 5.3.2.1.2.2
ألغِ العامل المشترك.
خطوة 5.3.2.1.2.3
أعِد كتابة العبارة.
خطوة 5.3.2.2
احذِف العامل المشترك لـ و.
خطوة 5.3.2.2.1
أخرِج العامل من .
خطوة 5.3.2.2.2
ألغِ العوامل المشتركة.
خطوة 5.3.2.2.2.1
أخرِج العامل من .
خطوة 5.3.2.2.2.2
ألغِ العامل المشترك.
خطوة 5.3.2.2.2.3
أعِد كتابة العبارة.
خطوة 5.3.2.2.2.4
اقسِم على .
خطوة 5.4
أوجِد قيمة باستخدام القاعدة .
خطوة 5.4.1
عوّض بقيم و و في القاعدة .
خطوة 5.4.2
بسّط الطرف الأيمن.
خطوة 5.4.2.1
بسّط كل حد.
خطوة 5.4.2.1.1
ارفع إلى القوة .
خطوة 5.4.2.1.2
اضرب في .
خطوة 5.4.2.1.3
اقسِم على .
خطوة 5.4.2.1.4
اضرب في .
خطوة 5.4.2.2
اطرح من .
خطوة 5.5
عوّض بقيم و و في شكل الرأس .
خطوة 6
استبدِل بـ في المعادلة .
خطوة 7
انقُل إلى المتعادل الأيمن بإضافة إلى كلا الطرفين.
خطوة 8
خطوة 8.1
أضف و.
خطوة 8.2
أضف و.
خطوة 9
اقسِم كل حد على ليصبح الطرف الأيمن مساويًا لواحد.
خطوة 10
بسّط كل حد في المعادلة لتعيين قيمة الطرف الأيمن بحيث تصبح مساوية لـ . تتطلب الصيغة القياسية للقطع الناقص أو القطع الزائد أن يكون المتعادل الأيمن .
خطوة 11
هذه الصيغة هي صيغة القطع الناقص. استخدِم هذه الصيغة لتحديد القيم المستخدمة لإيجاد المركز بالإضافة إلى المحور الرئيسي والثانوي للقطع الناقص.
خطوة 12
طابِق القيم الموجودة في هذا القطع الناقص بقيم الصيغة القياسية. يمثل المتغير نصف قطر المحور الرئيسي للقطع الناقص، ويمثل نصف قطر المحور الثانوي للقطع الناقص، ويمثل الإزاحة الأفقية x عن نقطة الأصل، ويمثل الإزاحة الرأسية y عن نقطة الأصل.
خطوة 13
أوجِد الاختلاف المركزي باستخدام القاعدة التالية.
خطوة 14
عوّض بقيمتَي و في القاعدة.
خطوة 15
خطوة 15.1
بسّط بَسْط الكسر.
خطوة 15.1.1
ارفع إلى القوة .
خطوة 15.1.2
ارفع إلى القوة .
خطوة 15.1.3
اضرب في .
خطوة 15.1.4
اطرح من .
خطوة 15.1.5
أعِد كتابة بالصيغة .
خطوة 15.1.5.1
أخرِج العامل من .
خطوة 15.1.5.2
أعِد كتابة بالصيغة .
خطوة 15.1.6
أخرِج الحدود من تحت الجذر.
خطوة 15.2
احذِف العامل المشترك لـ و.
خطوة 15.2.1
أخرِج العامل من .
خطوة 15.2.2
ألغِ العوامل المشتركة.
خطوة 15.2.2.1
أخرِج العامل من .
خطوة 15.2.2.2
ألغِ العامل المشترك.
خطوة 15.2.2.3
أعِد كتابة العبارة.
خطوة 16
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية:
خطوة 17