إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
عيّن قيمة المتغير المستقل في بحيث تصبح أكبر من لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 2
أضِف إلى كلا طرفي المتباينة.
خطوة 3
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 4
خطوة 4.1
اطرح من كلا طرفي المتباينة.
خطوة 4.2
اقسِم كل حد في على وبسّط.
خطوة 4.2.1
اقسِم كل حد في على . وعند ضرب كلا طرفي المتباينة في قيمة سالبة أو قسمتهما عليها، اعكس اتجاه علامة المتباينة.
خطوة 4.2.2
بسّط الطرف الأيسر.
خطوة 4.2.2.1
ألغِ العامل المشترك لـ .
خطوة 4.2.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.2.1.2
اقسِم على .
خطوة 4.2.3
بسّط الطرف الأيمن.
خطوة 4.2.3.1
اقسِم على .
خطوة 5
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 6
خطوة 6.1
لحذف الجذر في المتعادل الأيسر، ربّع كلا المتعادلين.
خطوة 6.2
بسّط كل متعادل.
خطوة 6.2.1
استخدِم لكتابة في صورة .
خطوة 6.2.2
بسّط الطرف الأيسر.
خطوة 6.2.2.1
بسّط .
خطوة 6.2.2.1.1
اضرب الأُسس في .
خطوة 6.2.2.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 6.2.2.1.1.2
ألغِ العامل المشترك لـ .
خطوة 6.2.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 6.2.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 6.2.2.1.2
بسّط.
خطوة 6.2.3
بسّط الطرف الأيمن.
خطوة 6.2.3.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 6.3
أوجِد قيمة .
خطوة 6.3.1
اطرح من كلا المتعادلين.
خطوة 6.3.2
اقسِم كل حد في على وبسّط.
خطوة 6.3.2.1
اقسِم كل حد في على .
خطوة 6.3.2.2
بسّط الطرف الأيسر.
خطوة 6.3.2.2.1
ألغِ العامل المشترك لـ .
خطوة 6.3.2.2.1.1
ألغِ العامل المشترك.
خطوة 6.3.2.2.1.2
اقسِم على .
خطوة 6.3.2.3
بسّط الطرف الأيمن.
خطوة 6.3.2.3.1
اقسِم على .
خطوة 7
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 8