إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
أوجِد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 2
ضع في اعتبارك الدالة الكسرية حيث هي درجة البسط و هي درجة القاسم.
1. إذا كانت ، فإن المحور السيني، ، هو خط التقارب الأفقي.
2. في حالة ، فإن خط التقارب الأفقي هو الخط .
3. في حالة ، لا يوجد خط تقارب أفقي (يوجد خط تقارب مائل).
خطوة 3
أوجِد و.
خطوة 4
بما أن ، إذن لا يوجد خط تقارب أفقي.
لا توجد خطوط تقارب أفقية
خطوة 5
خطوة 5.1
عيّن متعددات الحدود التي ستتم قسمتها. وفي حالة عدم وجود حد لكل أُس، أدخل حدًا واحدًا بقيمة .
+ | + | + |
خطوة 5.2
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
+ | + | + |
خطوة 5.3
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
+ | + | + | |||||||
+ | + |
خطوة 5.4
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
+ | + | + | |||||||
- | - |
خطوة 5.5
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
+ | + | + | |||||||
- | - | ||||||||
+ |
خطوة 5.6
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
+ | + | + | |||||||
- | - | ||||||||
+ | + |
خطوة 5.7
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
+ | |||||||||
+ | + | + | |||||||
- | - | ||||||||
+ | + |
خطوة 5.8
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
+ | |||||||||
+ | + | + | |||||||
- | - | ||||||||
+ | + | ||||||||
+ | + |
خطوة 5.9
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
+ | |||||||||
+ | + | + | |||||||
- | - | ||||||||
+ | + | ||||||||
- | - |
خطوة 5.10
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
+ | |||||||||
+ | + | + | |||||||
- | - | ||||||||
+ | + | ||||||||
- | - | ||||||||
+ |
خطوة 5.11
الإجابة النهائية هي ناتج القسمة زائد الباقي على المقسوم عليه.
خطوة 5.12
خط التقارب المائل هو جزء متعدد الحدود من ناتج القسمة المطولة.
خطوة 6
هذه هي مجموعة جميع خطوط التقارب.
خطوط التقارب الرأسية:
لا توجد خطوط تقارب أفقية
خطوط التقارب المائلة:
خطوة 7