ما قبل التفاضل والتكامل الأمثلة

أوجد القيمة العظمى/الصغرى r=3+2sin(theta)
خطوة 1
أوجِد المشتق الأول للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3
أضف و.
خطوة 2
أوجِد المشتق الثاني للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3
اضرب في .
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
اقسِم كل حد في على .
خطوة 4.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.1.2
اقسِم على .
خطوة 4.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
اقسِم على .
خطوة 5
خُذ جيب التمام العكسي لكلا المتعادلين لاستخراج من داخل جيب التمام.
خطوة 6
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
القيمة الدقيقة لـ هي .
خطوة 7
دالة جيب التمام موجبة في الربعين الأول والرابع. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الرابع.
خطوة 8
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 8.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 8.2
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1
اجمع و.
خطوة 8.2.2
اجمع البسوط على القاسم المشترك.
خطوة 8.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 8.3.1
اضرب في .
خطوة 8.3.2
اطرح من .
خطوة 9
حل المعادلة .
خطوة 10
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 11
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 11.1
القيمة الدقيقة لـ هي .
خطوة 11.2
اضرب في .
خطوة 12
هي حد أقصى محلي لأن قيمة المشتقة الثانية سالبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أقصى محلي
خطوة 13
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
خطوة 13.1
استبدِل المتغير بـ في العبارة.
خطوة 13.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 13.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 13.2.1.1
القيمة الدقيقة لـ هي .
خطوة 13.2.1.2
اضرب في .
خطوة 13.2.2
أضف و.
خطوة 13.2.3
الإجابة النهائية هي .
خطوة 14
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 15
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 15.1
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن الجيب سالب في الربع الرابع.
خطوة 15.2
القيمة الدقيقة لـ هي .
خطوة 15.3
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 15.3.1
اضرب في .
خطوة 15.3.2
اضرب في .
خطوة 16
هي حد أدنى محلي لأن قيمة المشتقة الثانية موجبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أدنى محلي
خطوة 17
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
خطوة 17.1
استبدِل المتغير بـ في العبارة.
خطوة 17.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 17.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 17.2.1.1
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن الجيب سالب في الربع الرابع.
خطوة 17.2.1.2
القيمة الدقيقة لـ هي .
خطوة 17.2.1.3
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 17.2.1.3.1
اضرب في .
خطوة 17.2.1.3.2
اضرب في .
خطوة 17.2.2
اطرح من .
خطوة 17.2.3
الإجابة النهائية هي .
خطوة 18
هذه هي القيم القصوى المحلية لـ .
هي نقطة قصوى محلية
هي نقاط دنيا محلية
خطوة 19