إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اطرح من كلا المتعادلين.
خطوة 1.2
أكمل المربع لـ .
خطوة 1.2.1
استخدِم الصيغة لإيجاد قيم و و.
خطوة 1.2.2
ضع في اعتبارك شكل رأس قطع مكافئ.
خطوة 1.2.3
أوجِد قيمة باستخدام القاعدة .
خطوة 1.2.3.1
عوّض بقيمتَي و في القاعدة .
خطوة 1.2.3.2
احذِف العامل المشترك لـ و.
خطوة 1.2.3.2.1
أخرِج العامل من .
خطوة 1.2.3.2.2
ألغِ العوامل المشتركة.
خطوة 1.2.3.2.2.1
أخرِج العامل من .
خطوة 1.2.3.2.2.2
ألغِ العامل المشترك.
خطوة 1.2.3.2.2.3
أعِد كتابة العبارة.
خطوة 1.2.3.2.2.4
اقسِم على .
خطوة 1.2.4
أوجِد قيمة باستخدام القاعدة .
خطوة 1.2.4.1
عوّض بقيم و و في القاعدة .
خطوة 1.2.4.2
بسّط الطرف الأيمن.
خطوة 1.2.4.2.1
بسّط كل حد.
خطوة 1.2.4.2.1.1
ارفع إلى القوة .
خطوة 1.2.4.2.1.2
اضرب في .
خطوة 1.2.4.2.1.3
اقسِم على .
خطوة 1.2.4.2.1.4
اضرب في .
خطوة 1.2.4.2.2
اطرح من .
خطوة 1.2.5
عوّض بقيم و و في شكل الرأس .
خطوة 1.3
استبدِل بـ في المعادلة .
خطوة 1.4
انقُل إلى المتعادل الأيمن بإضافة إلى كلا الطرفين.
خطوة 1.5
أكمل المربع لـ .
خطوة 1.5.1
استخدِم الصيغة لإيجاد قيم و و.
خطوة 1.5.2
ضع في اعتبارك شكل رأس قطع مكافئ.
خطوة 1.5.3
أوجِد قيمة باستخدام القاعدة .
خطوة 1.5.3.1
عوّض بقيمتَي و في القاعدة .
خطوة 1.5.3.2
بسّط الطرف الأيمن.
خطوة 1.5.3.2.1
احذِف العامل المشترك لـ و.
خطوة 1.5.3.2.1.1
أخرِج العامل من .
خطوة 1.5.3.2.1.2
ألغِ العوامل المشتركة.
خطوة 1.5.3.2.1.2.1
أخرِج العامل من .
خطوة 1.5.3.2.1.2.2
ألغِ العامل المشترك.
خطوة 1.5.3.2.1.2.3
أعِد كتابة العبارة.
خطوة 1.5.3.2.2
احذِف العامل المشترك لـ و.
خطوة 1.5.3.2.2.1
أخرِج العامل من .
خطوة 1.5.3.2.2.2
انقُل العدد سالب واحد من قاسم .
خطوة 1.5.3.2.3
اضرب في .
خطوة 1.5.4
أوجِد قيمة باستخدام القاعدة .
خطوة 1.5.4.1
عوّض بقيم و و في القاعدة .
خطوة 1.5.4.2
بسّط الطرف الأيمن.
خطوة 1.5.4.2.1
بسّط كل حد.
خطوة 1.5.4.2.1.1
ارفع إلى القوة .
خطوة 1.5.4.2.1.2
اضرب في .
خطوة 1.5.4.2.1.3
اقسِم على .
خطوة 1.5.4.2.1.4
اضرب في .
خطوة 1.5.4.2.2
أضف و.
خطوة 1.5.5
عوّض بقيم و و في شكل الرأس .
خطوة 1.6
استبدِل بـ في المعادلة .
خطوة 1.7
انقُل إلى المتعادل الأيمن بإضافة إلى كلا الطرفين.
خطوة 1.8
بسّط .
خطوة 1.8.1
أضف و.
خطوة 1.8.2
اطرح من .
خطوة 1.9
اعكس العلامة في كل حد من حدود المعادلة بحيث يصبح الحد الموجود على الجانب الأيمن موجبًا.
خطوة 1.10
اقسِم كل حد على ليصبح الطرف الأيمن مساويًا لواحد.
خطوة 1.11
بسّط كل حد في المعادلة لتعيين قيمة الطرف الأيمن بحيث تصبح مساوية لـ . تتطلب الصيغة القياسية للقطع الناقص أو القطع الزائد أن يكون المتعادل الأيمن .
خطوة 2
هذه الصيغة هي صيغة القطع الزائد. استخدِم هذه الصيغة لتحديد القيم المُستخدمة لإيجاد رؤوس القطع الزائد وخطوط تقاربه.
خطوة 3
طابِق القيم الموجودة في هذا القطع الزائد بقيم الصيغة القياسية. يمثل المتغير الإزاحة الأفقية x عن نقطة الأصل، ويمثل الإزاحة الرأسية y عن نقطة الأصل، .
خطوة 4
يتبع مركز القطع الزائد الصيغة . عوّض بقيمتَي و.
خطوة 5
خطوة 5.1
أوجِد المسافة من المركز إلى بؤرة القطع الزائد باستخدام القاعدة التالية.
خطوة 5.2
عوّض بقيمتَي و في القاعدة.
خطوة 5.3
بسّط.
خطوة 5.3.1
بسّط العبارة.
خطوة 5.3.1.1
ارفع إلى القوة .
خطوة 5.3.1.2
طبّق قاعدة الضرب على .
خطوة 5.3.1.3
ارفع إلى القوة .
خطوة 5.3.2
أعِد كتابة بالصيغة .
خطوة 5.3.2.1
استخدِم لكتابة في صورة .
خطوة 5.3.2.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 5.3.2.3
اجمع و.
خطوة 5.3.2.4
ألغِ العامل المشترك لـ .
خطوة 5.3.2.4.1
ألغِ العامل المشترك.
خطوة 5.3.2.4.2
أعِد كتابة العبارة.
خطوة 5.3.2.5
احسِب قيمة الأُس.
خطوة 5.3.3
بسّط العبارة.
خطوة 5.3.3.1
اضرب في .
خطوة 5.3.3.2
أضف و.
خطوة 5.3.3.3
أعِد كتابة بالصيغة .
خطوة 5.3.3.4
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 6
خطوة 6.1
يمكن إيجاد الرأس الأول لقطع زائد بجمع مع .
خطوة 6.2
عوّض بقيم و و المعروفة في القاعدة وبسّط.
خطوة 6.3
يمكن إيجاد الرأس الثاني لقطع زائد بطرح من .
خطوة 6.4
عوّض بقيم و و المعروفة في القاعدة وبسّط.
خطوة 6.5
تتبع رؤوس القطع الزائد صيغة . القطوع الزائدة لها رأسان.
خطوة 7
خطوة 7.1
يمكن إيجاد البؤرة الأولى لقطع زائد بجمع مع .
خطوة 7.2
عوّض بقيم و و المعروفة في القاعدة وبسّط.
خطوة 7.3
يمكن إيجاد البؤرة الثانية لقطع زائد بطرح من .
خطوة 7.4
عوّض بقيم و و المعروفة في القاعدة وبسّط.
خطوة 7.5
تتبع بؤر القطع الزائد صيغة . القطوع الزائدة لها بؤرتان.
خطوة 8
خطوة 8.1
أوجِد الاختلاف المركزي باستخدام القاعدة التالية.
خطوة 8.2
عوّض بقيمتَي و في القاعدة.
خطوة 8.3
بسّط.
خطوة 8.3.1
بسّط بَسْط الكسر.
خطوة 8.3.1.1
ارفع إلى القوة .
خطوة 8.3.1.2
طبّق قاعدة الضرب على .
خطوة 8.3.1.3
ارفع إلى القوة .
خطوة 8.3.1.4
أعِد كتابة بالصيغة .
خطوة 8.3.1.4.1
استخدِم لكتابة في صورة .
خطوة 8.3.1.4.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 8.3.1.4.3
اجمع و.
خطوة 8.3.1.4.4
ألغِ العامل المشترك لـ .
خطوة 8.3.1.4.4.1
ألغِ العامل المشترك.
خطوة 8.3.1.4.4.2
أعِد كتابة العبارة.
خطوة 8.3.1.4.5
احسِب قيمة الأُس.
خطوة 8.3.1.5
اضرب في .
خطوة 8.3.1.6
أضف و.
خطوة 8.3.1.7
أعِد كتابة بالصيغة .
خطوة 8.3.1.8
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 8.3.2
اقسِم على .
خطوة 9
خطوة 9.1
أوجِد قيمة المعلمة البؤرية للقطع الزائد باستخدام القاعدة التالية.
خطوة 9.2
عوّض بقيمتَي و في القاعدة.
خطوة 9.3
بسّط.
خطوة 9.3.1
احذِف العامل المشترك لـ و.
خطوة 9.3.1.1
أخرِج العامل من .
خطوة 9.3.1.2
ألغِ العوامل المشتركة.
خطوة 9.3.1.2.1
أخرِج العامل من .
خطوة 9.3.1.2.2
ألغِ العامل المشترك.
خطوة 9.3.1.2.3
أعِد كتابة العبارة.
خطوة 9.3.2
أعِد كتابة بالصيغة .
خطوة 9.3.2.1
استخدِم لكتابة في صورة .
خطوة 9.3.2.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 9.3.2.3
اجمع و.
خطوة 9.3.2.4
ألغِ العامل المشترك لـ .
خطوة 9.3.2.4.1
ألغِ العامل المشترك.
خطوة 9.3.2.4.2
أعِد كتابة العبارة.
خطوة 9.3.2.5
احسِب قيمة الأُس.
خطوة 10
تتبع خطوط التقارب الصيغة لأن هذا القطع الزائد مفتوح إلى أعلى وإلى أسفل.
خطوة 11
خطوة 11.1
احذِف الأقواس.
خطوة 11.2
بسّط كل حد.
خطوة 11.2.1
اضرب في .
خطوة 11.2.2
طبّق خاصية التوزيع.
خطوة 11.2.3
اجمع و.
خطوة 11.2.4
اجمع و.
خطوة 11.2.5
بسّط كل حد.
خطوة 11.2.5.1
انقُل إلى يسار .
خطوة 11.2.5.2
انقُل السالب أمام الكسر.
خطوة 12
خطوة 12.1
احذِف الأقواس.
خطوة 12.2
بسّط كل حد.
خطوة 12.2.1
اضرب في .
خطوة 12.2.2
طبّق خاصية التوزيع.
خطوة 12.2.3
اجمع و.
خطوة 12.2.4
اضرب .
خطوة 12.2.4.1
اضرب في .
خطوة 12.2.4.2
اجمع و.
خطوة 13
يحتوي هذا القطع الزائد على خطي تقارب.
خطوة 14
هذه القيم تمثل القيم المهمة لتمثيل القطع الزائد بيانيًا وتحليله.
المركز:
الرؤوس:
البؤر:
الاختلاف المركزي:
المعلمة البؤرية:
خطوط التقارب: ،
خطوة 15