إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 1.2
احذِف الأقواس.
خطوة 1.3
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
خطوة 2
خطوة 2.1
اضرب كل حد في في .
خطوة 2.2
بسّط الطرف الأيسر.
خطوة 2.2.1
بسّط بالضرب.
خطوة 2.2.1.1
طبّق خاصية التوزيع.
خطوة 2.2.1.2
بسّط العبارة.
خطوة 2.2.1.2.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 2.2.1.2.2
اضرب في .
خطوة 2.2.2
بسّط كل حد.
خطوة 2.2.2.1
اضرب في بجمع الأُسس.
خطوة 2.2.2.1.1
انقُل .
خطوة 2.2.2.1.2
اضرب في .
خطوة 2.2.2.1.2.1
ارفع إلى القوة .
خطوة 2.2.2.1.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.2.2.1.3
أضف و.
خطوة 2.2.2.2
اضرب في .
خطوة 2.3
بسّط الطرف الأيمن.
خطوة 2.3.1
ألغِ العامل المشترك لـ .
خطوة 2.3.1.1
ألغِ العامل المشترك.
خطوة 2.3.1.2
أعِد كتابة العبارة.
خطوة 3
خطوة 3.1
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
خطوة 3.1.1
اطرح من كلا المتعادلين.
خطوة 3.1.2
اطرح من .
خطوة 3.2
حلّل المتعادل الأيسر إلى عوامل.
خطوة 3.2.1
أخرِج العامل من .
خطوة 3.2.1.1
أخرِج العامل من .
خطوة 3.2.1.2
أخرِج العامل من .
خطوة 3.2.1.3
أخرِج العامل من .
خطوة 3.2.2
أعِد كتابة بالصيغة .
خطوة 3.2.3
حلّل إلى عوامل.
خطوة 3.2.3.1
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 3.2.3.2
احذِف الأقواس غير الضرورية.
خطوة 3.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.4
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.5.2
اطرح من كلا المتعادلين.
خطوة 3.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.6.2
أضف إلى كلا المتعادلين.
خطوة 3.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.