إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2
خطوة 2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.2
اطرح من كلا المتعادلين.
خطوة 3
خطوة 3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.2
أوجِد قيمة في .
خطوة 3.2.1
اطرح من كلا المتعادلين.
خطوة 3.2.2
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.2.3
بسّط .
خطوة 3.2.3.1
أعِد كتابة بالصيغة .
خطوة 3.2.3.2
أعِد كتابة بالصيغة .
خطوة 3.2.3.3
أعِد كتابة بالصيغة .
خطوة 3.2.3.4
أعِد كتابة بالصيغة .
خطوة 3.2.3.5
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 3.2.3.6
انقُل إلى يسار .
خطوة 3.2.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.2.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.2.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.2.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4
خطوة 4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2
أوجِد قيمة في .
خطوة 4.2.1
اطرح من كلا المتعادلين.
خطوة 4.2.2
اقسِم كل حد في على وبسّط.
خطوة 4.2.2.1
اقسِم كل حد في على .
خطوة 4.2.2.2
بسّط الطرف الأيسر.
خطوة 4.2.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 4.2.2.2.2
اقسِم على .
خطوة 4.2.2.3
بسّط الطرف الأيمن.
خطوة 4.2.2.3.1
اقسِم على .
خطوة 5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 6
استخدِم كل جذر من الجذور لإنشاء فترات اختبار.
خطوة 7
خطوة 7.1
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 7.1.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 7.1.2
استبدِل بـ في المتباينة الأصلية.
خطوة 7.1.3
الطرف الأيسر أصغر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
صائب
صائب
خطوة 7.2
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 7.2.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 7.2.2
استبدِل بـ في المتباينة الأصلية.
خطوة 7.2.3
الطرف الأيسر أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة خطأ.
خطأ
خطأ
خطوة 7.3
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 7.3.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 7.3.2
استبدِل بـ في المتباينة الأصلية.
خطوة 7.3.3
الطرف الأيسر أصغر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
صائب
صائب
خطوة 7.4
قارن بين الفترات لتحدد أيًا منها يستوفي المتباينة الأصلية.
صحيحة
خطأ
صحيحة
صحيحة
خطأ
صحيحة
خطوة 8
يتكون الحل من جميع الفترات الصحيحة.
أو
خطوة 9
حوّل المتباينة إلى ترميز فترة.
خطوة 10