ما قبل التفاضل والتكامل الأمثلة

افصل بتحليل الكسر إلى أجزاء (7x+6)/((x+6)(6x-1))
خطوة 1
فكّ الكسر واضرب في القاسم المشترك.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أنشئ كسرًا جديدًا لكل عامل في القاسم باستخدام العامل كقاسم، وقيمة غير معروفة كبسط الكسر. ونظرًا إلى أن العامل في القاسم خطي، ضع متغيرًا واحدًا في مكانه .
خطوة 1.2
أنشئ كسرًا جديدًا لكل عامل في القاسم باستخدام العامل كقاسم، وقيمة غير معروفة كبسط الكسر. ونظرًا إلى أن العامل في القاسم خطي، ضع متغيرًا واحدًا في مكانه .
خطوة 1.3
اضرب كل كسر في المعادلة في قاسم العبارة الأصلية. في هذه الحالة، القاسم يساوي .
خطوة 1.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
ألغِ العامل المشترك.
خطوة 1.4.2
أعِد كتابة العبارة.
خطوة 1.5
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
ألغِ العامل المشترك.
خطوة 1.5.2
اقسِم على .
خطوة 1.6
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.6.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.6.1.1
ألغِ العامل المشترك.
خطوة 1.6.1.2
اقسِم على .
خطوة 1.6.2
طبّق خاصية التوزيع.
خطوة 1.6.3
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.6.4
انقُل إلى يسار .
خطوة 1.6.5
أعِد كتابة بالصيغة .
خطوة 1.6.6
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.6.6.1
ألغِ العامل المشترك.
خطوة 1.6.6.2
اقسِم على .
خطوة 1.6.7
طبّق خاصية التوزيع.
خطوة 1.6.8
انقُل إلى يسار .
خطوة 1.7
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.7.1
انقُل .
خطوة 1.7.2
أعِد ترتيب و.
خطوة 1.7.3
انقُل .
خطوة 2
أنشئ معادلات لمتغيرات الكسور الجزئية واستخدمها لتعيين سلسلة معادلات.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات من كل متعادل. ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 2.2
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات الحدود التي لا تتضمن . ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 2.3
عيّن سلسلة المعادلات لإيجاد معاملات الكسور الجزئية.
خطوة 3
أوجِد حل سلسلة المعادلات.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
أعِد كتابة المعادلة في صورة .
خطوة 3.1.2
اطرح من كلا المتعادلين.
خطوة 3.2
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
استبدِل كافة حالات حدوث في بـ .
خطوة 3.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1.1
أعِد كتابة بالصيغة .
خطوة 3.2.2.1.1.2
طبّق خاصية التوزيع.
خطوة 3.2.2.1.1.3
اضرب في .
خطوة 3.2.2.1.1.4
اضرب في .
خطوة 3.2.2.1.2
اطرح من .
خطوة 3.3
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
أعِد كتابة المعادلة في صورة .
خطوة 3.3.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
اطرح من كلا المتعادلين.
خطوة 3.3.2.2
اطرح من .
خطوة 3.3.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1
اقسِم كل حد في على .
خطوة 3.3.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.2.1.1
ألغِ العامل المشترك.
خطوة 3.3.3.2.1.2
اقسِم على .
خطوة 3.3.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.3.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 3.4
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
استبدِل كافة حالات حدوث في بـ .
خطوة 3.4.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.2.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.2.1.1.1
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.2.1.1.1.1
اجمع و.
خطوة 3.4.2.1.1.1.2
اضرب في .
خطوة 3.4.2.1.1.2
انقُل السالب أمام الكسر.
خطوة 3.4.2.1.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 3.4.2.1.3
اجمع و.
خطوة 3.4.2.1.4
اجمع البسوط على القاسم المشترك.
خطوة 3.4.2.1.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.2.1.5.1
اضرب في .
خطوة 3.4.2.1.5.2
اطرح من .
خطوة 3.5
اسرِد جميع الحلول.
خطوة 4
استبدِل كل معامل من معاملات الكسور الجزئية في بالقيم التي تم إيجادها لـ و.