إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2
خطوة 2.1
أخرِج العامل من .
خطوة 2.1.1
أخرِج العامل من .
خطوة 2.1.2
أخرِج العامل من .
خطوة 2.1.3
أخرِج العامل من .
خطوة 2.1.4
أخرِج العامل من .
خطوة 2.1.5
أخرِج العامل من .
خطوة 2.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.3.2
أوجِد قيمة في .
خطوة 2.3.2.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 2.3.2.2
بسّط .
خطوة 2.3.2.2.1
أعِد كتابة بالصيغة .
خطوة 2.3.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 2.3.2.2.3
زائد أو ناقص يساوي .
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أوجِد قيمة في .
خطوة 2.4.2.1
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 2.4.2.2
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 2.4.2.3
بسّط.
خطوة 2.4.2.3.1
بسّط بَسْط الكسر.
خطوة 2.4.2.3.1.1
ارفع إلى القوة .
خطوة 2.4.2.3.1.2
اضرب .
خطوة 2.4.2.3.1.2.1
اضرب في .
خطوة 2.4.2.3.1.2.2
اضرب في .
خطوة 2.4.2.3.1.3
أضف و.
خطوة 2.4.2.3.1.4
أعِد كتابة بالصيغة .
خطوة 2.4.2.3.1.4.1
أخرِج العامل من .
خطوة 2.4.2.3.1.4.2
أعِد كتابة بالصيغة .
خطوة 2.4.2.3.1.5
أخرِج الحدود من تحت الجذر.
خطوة 2.4.2.3.2
اضرب في .
خطوة 2.4.2.3.3
بسّط .
خطوة 2.4.2.4
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 2.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية:
خطوة 4