ما قبل التفاضل والتكامل الأمثلة

خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
مشتق بالنسبة إلى يساوي .
خطوة 3
أوجِد مشتقة المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2.2.2
مشتق بالنسبة إلى يساوي .
خطوة 3.2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.2.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.5
اضرب في .
خطوة 3.2.6
انقُل إلى يسار .
خطوة 3.2.7
اضرب في .
خطوة 3.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.3.2.2
مشتق بالنسبة إلى يساوي .
خطوة 3.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.5
اضرب في .
خطوة 3.3.6
اضرب في .
خطوة 3.3.7
اجمع و.
خطوة 3.3.8
اجمع و.
خطوة 3.3.9
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.9.1
أخرِج العامل من .
خطوة 3.3.9.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.9.2.1
أخرِج العامل من .
خطوة 3.3.9.2.2
ألغِ العامل المشترك.
خطوة 3.3.9.2.3
أعِد كتابة العبارة.
خطوة 3.3.9.2.4
اقسِم على .
خطوة 3.4
أعِد ترتيب الحدود.
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
استبدِل بـ .