إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2
خطوة 2.1
حلّل المتعادل الأيسر إلى عوامل.
خطوة 2.1.1
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 2.1.1.1
جمّع أول حدين وآخر حدين.
خطوة 2.1.1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 2.1.2
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 2.1.3
أعِد كتابة بالصيغة .
خطوة 2.1.4
بما أن كلا الحدّين هما مكعبان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مكعبين، حيث و.
خطوة 2.1.5
حلّل إلى عوامل.
خطوة 2.1.5.1
بسّط.
خطوة 2.1.5.1.1
انقُل إلى يسار .
خطوة 2.1.5.1.2
ارفع إلى القوة .
خطوة 2.1.5.2
احذِف الأقواس غير الضرورية.
خطوة 2.1.6
اجمع الأُسس.
خطوة 2.1.6.1
ارفع إلى القوة .
خطوة 2.1.6.2
ارفع إلى القوة .
خطوة 2.1.6.3
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.1.6.4
أضف و.
خطوة 2.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.3.2
أوجِد قيمة في .
خطوة 2.3.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.3.2.2
أضف إلى كلا المتعادلين.
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أوجِد قيمة في .
خطوة 2.4.2.1
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 2.4.2.2
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 2.4.2.3
بسّط.
خطوة 2.4.2.3.1
بسّط بَسْط الكسر.
خطوة 2.4.2.3.1.1
ارفع إلى القوة .
خطوة 2.4.2.3.1.2
اضرب .
خطوة 2.4.2.3.1.2.1
اضرب في .
خطوة 2.4.2.3.1.2.2
اضرب في .
خطوة 2.4.2.3.1.3
اطرح من .
خطوة 2.4.2.3.1.4
أعِد كتابة بالصيغة .
خطوة 2.4.2.3.1.5
أعِد كتابة بالصيغة .
خطوة 2.4.2.3.1.6
أعِد كتابة بالصيغة .
خطوة 2.4.2.3.1.7
أعِد كتابة بالصيغة .
خطوة 2.4.2.3.1.7.1
أخرِج العامل من .
خطوة 2.4.2.3.1.7.2
أعِد كتابة بالصيغة .
خطوة 2.4.2.3.1.8
أخرِج الحدود من تحت الجذر.
خطوة 2.4.2.3.1.9
انقُل إلى يسار .
خطوة 2.4.2.3.2
اضرب في .
خطوة 2.4.2.4
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 2.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3