ما قبل التفاضل والتكامل الأمثلة

أوجد المعادلة باستخدام نقطتين (-5,0) , (5,0)
,
خطوة 1
استخدِم لحساب معادلة الخط المستقيم، حيث يمثل الميل و تمثل نقطة التقاطع مع المحور الصادي.
لحساب معادلة الخط المستقيم، استخدِم الصيغة .
خطوة 2
الميل يساوي التغيير في على التغيير في ، أو فرق الصادات على فرق السينات.
خطوة 3
التغيير في يساوي الفرق في الإحداثيات السينية (يُعرف أيضًا بفرق السينات)، أما التغيير في يساوي الفرق في الإحداثيات الصادية (يُعرف أيضًا بفرق الصادات).
خطوة 4
عوّض بقيمتَي و في المعادلة لإيجاد الميل.
خطوة 5
إيجاد الميل .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
اختزِل العبارة بحذف العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1.1
أعِد كتابة بالصيغة .
خطوة 5.1.1.2
أخرِج العامل من .
خطوة 5.1.1.3
أعِد ترتيب الحدود.
خطوة 5.1.1.4
أخرِج العامل من .
خطوة 5.1.1.5
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1.5.1
أخرِج العامل من .
خطوة 5.1.1.5.2
أخرِج العامل من .
خطوة 5.1.1.5.3
أخرِج العامل من .
خطوة 5.1.1.5.4
ألغِ العامل المشترك.
خطوة 5.1.1.5.5
أعِد كتابة العبارة.
خطوة 5.1.2
أضف و.
خطوة 5.2
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
اضرب في .
خطوة 5.2.2
أضف و.
خطوة 5.3
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
اضرب في .
خطوة 5.3.2
اقسِم على .
خطوة 6
أوجِد قيمة باستخدام قاعدة معادلة الخط.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استخدِم قاعدة معادلة الخط المستقيم لإيجاد .
خطوة 6.2
عوّض بقيمة في المعادلة.
خطوة 6.3
عوّض بقيمة في المعادلة.
خطوة 6.4
عوّض بقيمة في المعادلة.
خطوة 6.5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.5.1
أعِد كتابة المعادلة في صورة .
خطوة 6.5.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.5.2.1
اضرب في .
خطوة 6.5.2.2
أضف و.
خطوة 7
بما أن قيم (الميل) و (نقطة التقاطع مع المحور الصادي) أصبحت معروفة الآن، فعوّض بها في لإيجاد معادلة الخط المستقيم.
خطوة 8