ما قبل التفاضل والتكامل الأمثلة

أوجد المعادلة باستخدام نقطتين (3,1) , (9,6)
,
خطوة 1
استخدِم لحساب معادلة الخط المستقيم، حيث يمثل الميل و تمثل نقطة التقاطع مع المحور الصادي.
لحساب معادلة الخط المستقيم، استخدِم الصيغة .
خطوة 2
الميل يساوي التغيير في على التغيير في ، أو فرق الصادات على فرق السينات.
خطوة 3
التغيير في يساوي الفرق في الإحداثيات السينية (يُعرف أيضًا بفرق السينات)، أما التغيير في يساوي الفرق في الإحداثيات الصادية (يُعرف أيضًا بفرق الصادات).
خطوة 4
عوّض بقيمتَي و في المعادلة لإيجاد الميل.
خطوة 5
إيجاد الميل .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1
اضرب في .
خطوة 5.1.2
اطرح من .
خطوة 5.2
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
اضرب في .
خطوة 5.2.2
اطرح من .
خطوة 6
أوجِد قيمة باستخدام قاعدة معادلة الخط.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استخدِم قاعدة معادلة الخط المستقيم لإيجاد .
خطوة 6.2
عوّض بقيمة في المعادلة.
خطوة 6.3
عوّض بقيمة في المعادلة.
خطوة 6.4
عوّض بقيمة في المعادلة.
خطوة 6.5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.5.1
أعِد كتابة المعادلة في صورة .
خطوة 6.5.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.5.2.1
أخرِج العامل من .
خطوة 6.5.2.2
ألغِ العامل المشترك.
خطوة 6.5.2.3
أعِد كتابة العبارة.
خطوة 6.5.3
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.3.1
اطرح من كلا المتعادلين.
خطوة 6.5.3.2
اكتب في صورة كسر ذي قاسم مشترك.
خطوة 6.5.3.3
اجمع البسوط على القاسم المشترك.
خطوة 6.5.3.4
اطرح من .
خطوة 6.5.3.5
انقُل السالب أمام الكسر.
خطوة 7
بما أن قيم (الميل) و (نقطة التقاطع مع المحور الصادي) أصبحت معروفة الآن، فعوّض بها في لإيجاد معادلة الخط المستقيم.
خطوة 8